
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{D}\mathrm{I}\mathrm{S}\mathrm{C}\mathrm{R}\mathrm{E}\mathrm{T}\mathrm{E} \mathrm{M}\mathrm{A}\mathrm{T}\mathrm{H}. © 2023 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 37, \mathrm{N}\mathrm{o}. 3, \mathrm{p}\mathrm{p}. 2049--2071

PARAMETERIZED COMPLEXITY FOR FINDING A PERFECT
PHYLOGENY FROM MIXED TUMOR SAMPLES\ast

WEN-HORNG SHEU\dagger AND BIING-FENG WANG\dagger

Abstract. Motivated by an application in cancer genomics, Hajirasouliha and Raphael
[Proceedings of the 14th International Workshop on Algorithms in Bioinformatics, 2014, pp. 354--
367] proposed the split-row problem (SR). In this problem, an m \times n binary matrix M is given.
A split-row operation on M is defined as replacing a row r by k > 1 rows r(1), r(2), . . . , r(k) whose
bitwise OR is equal to r. The cost of the operation is the number of additional rows induced, that is,
k - 1. The goal is to find a sequence of split-row operations that transforms M into a matrix corre-
sponding to a perfect phylogeny and the total cost is minimized. Recently, Hujdurovi\'c et al. [ACM
Trans. Algorithms, 14 (2018), 26] proved the APX-hardness of SR and presented efficient exact
and approximation algorithms. The parameterized study of SR was left as a direction for future
work. Let \varepsilon (M) denote the minimum total cost. This paper gives an O\ast (2\mathrm{m}\mathrm{i}\mathrm{n}(n,2\varepsilon (M))-time exact
algorithm for SR. This result indicates that SR is fixed-parameter tractable when parameterized by
\varepsilon (M). In addition, in the worst case, our algorithm requires O\ast (2n) time, significantly improving
the previous upper bound of O\ast (nn). Hujdurovi\'c et al.'s exact algorithm can be modified to solve
a variant of SR, called the distinct split-row problem (DSR). Our algorithm can be adapted to this
variant as well. In addition, our algorithms can be extended to solve SR and DSR with the following
additional constraint: only the rows in a given subset are allowed to be split.

Key words. algorithms, fixed-parameter tractability, split-row problem, distinct split-row
problem, perfect phylogenies

MSC codes. 05C05, 68Q27, 68W40, 92D15

DOI. 10.1137/21M1449269

1. Introduction. A perfect phylogeny is a rooted tree representing the evolution-
ary history of m objects in terms of n characters. The objects correspond bijectively
to the leaves of the tree, and each character labels exactly one edge of the tree. Each
object is associated with the set of characters which it exhibits: for an object r and
a character c, r has character c if and only if the edge labeled by c is on the unique
path from r to the root. Figure 1(b) shows a perfect phylogeny T \prime , where the objects

are \{ r(1)1 , r
(2)
1 , r

(3)
1 , r

(1)
2 , r

(1)
3 , r

(2)
3 , r

(3)
3 , r

(1)
4 \} and the characters are \{ c1, c2, . . . , c6\} . The

leaf r
(2)
1 has characters c2 and c6. The matrix representation of a perfect phylogeny

is an m\times n binary matrix in which each row is associated with a leaf, each column is
associated with a character, and the entry at row r and column c is 1 if and only if
r has character c. In Figure 1, M \prime is the matrix representation of T \prime . For clarity, in
Figure 1, we omit displaying zeros in a binary matrix. While each perfect phylogeny
naturally corresponds to a binary matrix, the opposite may not be true. Given a
binary matrix M , the perfect phylogeny problem asks if M corresponds to a perfect
phylogeny. The perfect phylogeny problem and its various generalizations have re-
ceived extensive study in computational biology [8, 9, 10, 19, 23]. In this paper, we
study a generalization introduced by Hajirasouliha and Raphael [13], called the split-
row problem (SR). In this problem, an m\times n binary matrix M is given. A split-row

\ast Received by the editors September 28, 2021; accepted for publication (in revised form) May 1,
2023; published electronically September 14, 2023.

https://doi.org/10.1137/21M1449269
Funding: This research was supported by the Ministry of Science and Technology of the

Republic of China under grant MOST-109-2221-E-007-080-MY3.
\dagger Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan 30013,

Republic of China (whsheu@gapp.nthu.edu.tw, bfwang@cs.nthu.edu.tw).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2049

D
ow

nl
oa

de
d

10
/0

7/
23

 to
 1

28
.1

20
.2

34
.1

32
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/21M1449269
mailto:whsheu@gapp.nthu.edu.tw
mailto:bfwang@cs.nthu.edu.tw

2050 WEN-HORNG SHEU AND BIING-FENG WANG

Fig. 1. An illustrative example.

operation on M is defined as replacing a row r of M by k rows r(1), r(2), . . . , r(k) whose
bitwise OR is equal to r. The cost of the operation is the number of additional rows
induced, that is, k - 1. The goal is to find a sequence of split-row operations that
transforms M into a matrix corresponding to a perfect phylogeny and the total cost is
minimized. Consider the example in Figure 1(a). The matrix M is transformed into

M \prime by performing two split-row operations: one replaces r1 by 3 rows r
(1)
1 , r

(2)
1 , and

r
(3)
1 and the other replaces r3 by 3 rows r

(1)
3 , r

(2)
3 , and r

(3)
3 . The total cost is 2+2= 4.

The study of SR was motivated by an application in cancer genomics [13]. Can-
cer is characterized by the uncontrolled growth of mutated cells, which results in the
formation of tumors. Recent DNA sequencing technologies have enabled the identi-
fication of the somatic mutations involved in a tumor cell subpopulation. This new
data has led to much interest in reconstructing the evolutionary history of somatic
mutations [12, 13, 25]. Tumor evolution is assumed to admit a perfect phylogeny, in
which each object is a tumor cell subpopulation and each character is a somatic muta-
tion [15]. This phylogenetic tree can offer a more comprehensive knowledge of tumor
progression [3, 22] and help in development of therapies [21]. In a tumor sample, we
may assume that each measured mutation has one of the two possible states: 0 =
normal and 1 = mutated. Thus, the sequencing data can be seen as a binary matrix,
in which each row is associated with a tumor sample, each column is associated with
a mutation, and the entry at row r and column c indicates whether mutation c is
observed in sample r. In a perfect condition, the binary matrix shall exhibit a perfect
phylogeny. However, the data used in most cancer sequencing studies are obtained
from bulk sequencing, in which each sample may be a mixture of several genetically
distinct cell subpopulations. Given such data, solving SR is to minimally decom-
pose the samples and thereby reconstruct the perfect phylogeny. As more datasets
of genome sequencing from multiple samples of a tumor become available, there will
be increasing need for computational models to infer mutational history of the data
[13]. Various other models have been proposed for inferring phylogenetic trees from
tumor samples [7, 12, 18, 20, 24, 25]. We refer the reader to [17] for a survey. In
the application of phylogeny reconstruction, the problem formulation of SR is simpler
than the probabilistic models usually used, because it just does binary classification
on the input. In [16], SR was used for phylogeny reconstruction and tested against
four popular models. Experimental results showed that due to its simplicity, SR was
more efficient in running time. In addition, the phylogenetic trees reconstructed by SR
were generally more faithful on real data and were mostly more accurate on simulated
data, and SR was more resilient to a certain type of noisy data.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

7/
23

 to
 1

28
.1

20
.2

34
.1

32
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

PARAMETERIZED COMPLEXITY FOR SR AND DSR 2051

Hujdurovi\'c et al. [15] showed the NP-hardness of SR and gave an efficient heuris-
tic algorithm. Later, Hujdurovi\'c et al. [14] further proved that SR is APX-hard. A
naive method for SR is to enumerate all possible ways to split each row into a set of
distinct rows. The time complexity of this naive method is 2\Omega (mn) in the worst case
[14]. Hujdurovi\'c et al. [14] introduced the uncovering branching problem (UB). In this
problem, we are given a set family \Phi , and we look at its containment digraph, which is
a digraph representing the containment relations between pairs of sets in a family. A
branching is defined to be a subset of arcs which induces a directed spanning forest of
the digraph. Each branching is associated with a cost. The goal is to find a branching
of the minimum cost. Hujdurovi\'c et al. [14] proved that SR is equivalent to UB and
called UB the branching formulation of SR. Using this formulation, they solved SR
more efficiently by a reduction to UB and then enumerating all branchings of the
derived containment digraph. Their algorithm requires O\ast (nn) time, where the O\ast

notation suppresses factors that are bounded by a polynomial in the input size. This
result significantly improves the time complexity of the naive approach. Using the
branching formulation, Hujdurovi\'c et al. also presented a polynomial-time approxi-
mation algorithm for SR. Let \varepsilon (M) denote the minimum cost of transforming a binary
matrix M into a matrix corresponding to a perfect phylogeny. Their approximation
algorithm outputs a matrix of at most min\{ h,w\} \times (m+ \varepsilon (M)) rows, where h and w
are, respectively, the height and the width of the derived containment digraph. Based
on the branching formulation, Husi\'c et al. [16] formulated SR as an integer linear
program (ILP) and implemented it into a software package called MIPUP, using the
CPLEX ILP solver.

The parameterized study of SR was left as a direction for future work in [14]. In
this paper, we show that SR can be solved in O\ast (2min(n,2\varepsilon (M)) time. In the language
of parameterized complexity, our result indicates that SR is fixed-parameter tractable
(FPT) when parameterized by \varepsilon (M). A parameterized problem is FPT if it can be
solved in f(k) \cdot IO(1) time, where k is the parameter, I denotes the input size, and
f is a computable function that depends only on k. The fixed-parameter tractability
of SR signifies that the combinatorial explosion in the running time of an algorithm
can be confined to the parameter \varepsilon (M) and does not necessarily depend on the input
size. The reader may refer to the monograph of Downey and Fellows [6] for more
information about the parameterized complexity. In the application of inferring a
perfect phylogeny from tumor samples, \varepsilon (M) measures the amount of mixing within
the tumor samples. Our result indicates that when the amount of mixing is small, SR
can be solved efficiently. In addition, in the worst case, our algorithm requires O\ast (2n)
time, significantly improving the previous upper bound of O\ast (nn).

A variant of SR, called the distinct split-row problem (DSR), was also introduced
by Hajirasouliha and Raphael in [13]. The task of DSR is to split the rows of the
input matrix such that the resulting matrix corresponds to a perfect phylogeny and
has the minimum number of distinct rows. For the example in Figure 1, the number
of distinct rows in M \prime is 5, since r

(2)
1 = r

(1)
4 , r

(3)
1 = r

(3)
3 , and r

(1)
2 = r

(2)
3 . Hujdurovi\'c

et al. [15] showed the NP-hardness of DSR. Hujdurovi\'c et al. [14] strengthened the
NP-hardness result by proving that DSR is APX-hard. In addition, they gave a
2-approximation algorithm, which implies that DSR is APX-complete, and gave an
O\ast (nn)-time exact algorithm. Our SR algorithm can be modified to solve DSR in
O\ast (2min(n,3\varepsilon (M))) time. In SR, all rows are allowed to be split. A constrained version
of SR mentioned in [14, 15] is as follows: an additional subset of rows is given and only
the rows in the given subset are allowed to be split. Denote this constrained version
as CSR. In the application of phylogeny reconstruction, CSR corresponds to the case
when some samples are known to be not mixtures of distinct cell subpopulation.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

7/
23

 to
 1

28
.1

20
.2

34
.1

32
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2052 WEN-HORNG SHEU AND BIING-FENG WANG

Table 1
Exact algorithms for SR, CSR, DSR, and CDSR.

ecruoSstluseRmelborP

SR

]41[O∗(nn)

]61[PLI

O∗(2min(n,2ε(M))

CSR O∗(2min(n,2ε(M))

)

)

DSR

]41[O∗(nn)

]61[PLI

O∗(2min(n,3ε(M))

CDSR O∗(2min(n,3ε(M))

this paper

this paper

this paper

this paper

A constrained version of DSR is defined similarly, denoted by CDSR. To the authors'
knowledge, no algorithm for CSR and CDSR has been presented in the literature.
Our algorithms for SR and DSR can be extended to solve CSR and CDSR in the
same time complexities. Table 1 summarizes exact algorithms for SR, CSR, DSR,
and CDSR.

Our new result for SR is designed based on the branching formulation in [14].
More specifically, we give an improved algorithm for finding an optimal branching
in the containment digraph of a given set family \Phi . An overview is as follows. In
the computation of an optimal branching, we find that some vertices, called trivial
vertices, can be removed without changing the cost of an optimal branching. A
branching represents a directed spanning forest and thus can be uniquely specified by
the parent of each vertex. In the computation of an optimal branching, we further
find that the parents of some vertices, called regular vertices, can be predetermined
in a greedy approach such that there exists an optimal branching in which the parent
of each regular vertex coincides with the predetermined one. On the basis of the
findings, we give an algorithm consisting of three phases: Phase 1 removes trivial
vertices, Phase 2 precomputes the parent of each regular vertex, and Phase 3 finds an
optimal branching using dynamic programming. Phases 1 and 2 require polynomial
time. Let t(\Phi) be the number of vertices that are nontrivial and nonregular in the
containment digraph of \Phi . Phase 3 requires O\ast (2t(\Phi)) time. Let \beta (\Phi) be the minimum
cost of a branching and \delta (\Phi) = \beta (\Phi) - | \Sigma | , where \Sigma is the ground set of \Phi . To estimate
the worst-case complexity of Phase 3, we give an upper bound on t(\Phi). More precisely,
we show that t(\Phi) \leq min(| \Phi | ,2 \cdot \delta (\Phi) - 1). Consequently, our algorithm runs in
O\ast (2min(| \Phi | ,2\delta (\Phi))) time. By applying this result, SR is solved in O\ast (2min(n,2\varepsilon (M)) time.

We remark that the ILP-based algorithm in [16] can be speeded up by using our
Phases 1 and 2 algorithms to predetermine the values of some variables. A laminar
set family is a set family in which each pair of sets are either disjoint or related
by containment. We also remark that UB is equivalent to the following interesting
problem: Transform a given set family \Phi to a laminar one by copying the elements of
the ground set; it is required that each set in \Phi receives at least one copy of each of
its original elements; and we want to minimize the number of additional copies. This
equivalence will be described in section 2.2.

This paper is organized as follows. Section 2 reviews the branching formulation.
Section 3 defines trivial vertices and regular vertices and gives an upper bound on t(\Phi).
Section 4 presents our new algorithm for the branching formulation. Section 5 modi-
fies the new algorithm to solve CSR, DSR, and CDSR. Section 6 concludes this paper.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

7/
23

 to
 1

28
.1

20
.2

34
.1

32
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

PARAMETERIZED COMPLEXITY FOR SR AND DSR 2053

2. Review of the branching formulation. This section describes Hujdurovi\'c
et al.'s branching formulation of SR. LetM \in \{ 0,1\} m\times n be a binary matrix. The entry
of M at a row r and a column c is denoted by Mr,c. The input matrix is assumed to
contain no rows or columns whose entries are all zeros. Clearly, the removal of such
rows or columns does not change \varepsilon (M). We also assume that all columns in the input
matrix are distinct. In case this is not true, the removal of duplicates also does not
change \varepsilon (M) [14].

2.1. Connection between conflict-free row splits and perfect phyloge-
nies.

Definition 2.1. Two columns c and c\prime of M are in conflict if there exist three
rows r, r\prime , r\prime \prime such that (1) Mr,c = 1 and Mr,c\prime = 1, (2) Mr\prime ,c = 0 and Mr\prime ,c\prime = 1, and
(3) Mr\prime \prime ,c = 1 and Mr\prime \prime ,c\prime = 0. We say that M is conflict-free if no two columns of M
are in conflict.

By the perfect phylogeny theorem [10, 11], a binary matrix M exhibits a perfect
phylogeny if and only if M is conflict-free. It is not difficult to construct a perfect
phylogeny corresponding to a given conflict-free matrix. In particular, [10] showed
that the construction can be done in linear time.

A matrix is a row split of M if it can be obtained from M by performing split-row
operations. Let \alpha (M) be the minimum number of rows of a conflict-free row split of
M . Recall that the cost of a split-row operation is the number of additional rows.
Thus, any sequence of split-row operations that transforms M into a matrix of m\prime

rows costs m\prime - m. As a result, \varepsilon (M) = \alpha (M) - m and the computation of \varepsilon (M) can
be done by finding a conflict-free row split of M with the minimum number of rows.

2.2. The branching formulation. Let \Phi be a set family over a set \Sigma . Without
loss of generality, we assume that \Phi does not contain the empty set and each element
of \Sigma is contained in at least one set of \Phi . The containment digraph D\Phi of \Phi is
the directed acyclic graph with vertex set \Phi and arc set \{ (v, v\prime) | v, v\prime \in \Phi , v \subset
v\prime \} . Figure 2(a) gives an example, in which \Sigma = \{ a, b, c, d\} and \Phi = \{ v1, v2, . . . , v6\} ,
where v1 = \{ a\} , v2 = \{ a, d\} , v3 = \{ c\} , v4 = \{ a, c\} , v5 = \{ a, b, c\} , and v6 = \{ a, c, d\} . A
directed rooted tree is a rooted tree with its edge directed toward the root. A directed
rooted forest is a disjoint union of directed rooted trees. A branching of D\Phi is a
subset B of arcs such that (\Phi ,B) is a digraph in which for each vertex v there is
at most one arc leaving v. In other words, a branching B is a subset of arcs such
that (\Phi ,B) is a directed rooted forest. See Figure 2(b) for an example, in which
B = \{ (v1, v5), (v2, v6), (v3, v6), (v4, v6)\} .

Consider a branching B of D\Phi . Let FB denote the forest (\Phi ,B). We say
that a vertex p is the B-parent of a vertex v if p is the parent of v in FB . The
terms B-child and B-ancestor are defined similarly. Note that each vertex v is
contained in any of its B-ancestors. The B-parent of a vertex v is denoted by
pB(v), which may be null. For an element e \in \Sigma and a vertex v \in \Phi , we say
that (e, v) is a target pair if e \in v. Consider a target pair (e, v). We say that e
is B-covered in v if v has a B-child u such that e \in u; otherwise, we say that e
is B-uncovered in v. A B-uncovered pair is a target pair (e, v) such that e is B-
uncovered in v. We denote by U(B) the set of all B-uncovered pairs. For each
element e \in \Sigma , we denote by UB(e) the set of all B-uncovered pairs (e, v), where
v \in \Phi . For the example in Figure 2(b), UB(a) = \{ (a, v1), (a, v2), (a, v4)\} ,UB(b) =
\{ (b, v5)\} ,UB(c) = \{ (c, v3), (c, v4), (c, v5)\} ,UB(d) = \{ (d, v2)\} , and U(B) is the union of
UB(a),UB(b),UB(c), and UB(d). Observe that if a vertex v contains an element e,
there is at least one descendant of v in which e is B-uncovered. Thus, | UB(e)| \geq 1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

7/
23

 to
 1

28
.1

20
.2

34
.1

32
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2054 WEN-HORNG SHEU AND BIING-FENG WANG

Fig. 2. An illustrative example.

for each element e \in \Sigma . The cost of a branching B is defined as | U(B)| . We denote
by \beta (\Phi) the minimum cost of a branching of D\Phi . Define an optimization problem,
which is referred as the branching formulation of SR, as follows.

Definition 2.2. The uncovering branching problem:
Input: A set family \Phi .
Task: Find a branching B of D\Phi with U(B) = \beta (\Phi).

Without loss of generality, we assume that \Phi contains more than one set; oth-
erwise, D\Phi consists of a single vertex and B = \emptyset is the unique branching. Huj-
durovi\'c et al. [14] proved that SR is equivalent to UB. An interested reader may
refer to [14] for the proof. Given the input matrix M of SR, a set family \Phi M of
size n over a set \Sigma M of size m is created for the reduction to the branching prob-
lem as follows. Let ri denote the row i of M . Define \Phi M = \{ v1, v2, . . . , vn\} , where
vj = \{ ri | 1 \leq i \leq m,Mi,j = 1\} . Intuitively, each vertex vj , 1 \leq j \leq n, repre-
sents the column j of M . For example, for the matrix M in Figure 1, we have
v1 = \{ r1\} , v2 = \{ r1, r4\} , v3 = \{ r3\} , v4 = \{ r1, r3\} , v5 = \{ r1, r2, r3\} , and v6 = \{ r1, r3, r4\} .
The ground set of \Phi M is \Sigma M = \{ r1, r2, . . . , rm\} . Hujdurovi\'c et al. [14] showed that
\alpha (M) = \beta (\Phi M) and each minimum cost branching of D\Phi M

can be transformed in
O(mn2) time to a minimum cost conflict-free row split of M . Accordingly, SR can
be solved by resorting to an algorithm for UB. This result is formally stated as the
following theorem.

Theorem 2.3 ([14]). \alpha (M) = \beta (\Phi M), and if there is an O(T)-time algorithm
for finding a minimum cost branching of D\Phi M

, then there is an O(mn2 + T)-time
algorithm for SR.

A laminar set family is a set family in which each pair of sets are either disjoint
or related by containment. A different interpretation of UB is described as follows.
We are given a set family \Phi , and we look at its containment digraph. We want to

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

7/
23

 to
 1

28
.1

20
.2

34
.1

32
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

PARAMETERIZED COMPLEXITY FOR SR AND DSR 2055

Fig. 3. Make the set family \Phi in Figure 2(a) laminar by using the branching in Figure 2(b).

transform \Phi to a laminar one by copying the elements of the ground set, and we
require that each set in \Phi receives at least one copy of the original elements, and the
resulting family is laminar with respect to the copies. Here is how a branching B
determines the copies: for each element e, UB(e) corresponds to the set of ``copies""
of e, and following the branching it determines which copies each set gets (i.e., for
a copy corresponding to a B-uncovered pair (e, v), all B-ancestors of v receive this
copy). Since B represents a directed forest, the new set family with respect to copies
is laminar. For example, consider the set family \Phi in Figure 2(a) and the branching
B in Figure 2(b). As depicted in Figure 3, by replacing each element e \in \{ a, b, c, d\}
with | UB(e)| copies, denoted by e1, e2, . . . , e| UB(e)| , \Phi is transformed to a laminar one.
Clearly, any feasible ``copying"" scheme also determines a branching as in every laminar
set family, each element is only contained in a chain. Therefore, copying elements to
``laminarize"" \Phi is exactly UB.

Let \delta (\Phi) = \beta (\Phi) - | \Sigma | . In this interpretation, \delta (\Phi) is the minimum number of
additional copies of the elements needed to make \Phi laminar, and our new algorithm
for UB in section 4 is an FPT algorithm with respect to the number of new copies
needed. Note that since \alpha (M) = \beta (\Phi M) and | \Sigma M | =m, we have \varepsilon (M) = \alpha (M) - m=
\beta (\Phi M) - | \Sigma M | = \delta (\Phi M).

3. An upper bound on \bfitt (\Phi). This section gives an upper bound on t(\Phi), which
is the number of vertices of D\Phi that are not trivial and not regular. More precisely,
we show that t(\Phi) \leq 2 \cdot \delta (\Phi) - 1. Recall that this upper bound is used to estimate
the worst-case complexity of our UB algorithm, which requires O\ast (2t(\Phi)) time. To
establish the bound, we assume that D\Phi contains at least one nonregular vertex; for
otherwise, t(\Phi) = 0 and our algorithm in section 4 solves UB in O(mn2) time.

For ease of presentation, in the remainder of this paper, we assume that \Sigma \in \Phi .
Suppose that this is not true. We simply add \Sigma into \Phi . Denote \Phi + to be the resulting
family. It is easy to observe that given a branching B+ of D\Phi + , we can obtain a
branching B of D\Phi with U(B+)\supseteq U(B) by deleting all arcs directed to \Sigma , and given
a branching B of D\Phi , we can obtain a branching B+ of D\Phi + with U(B+) = U(B)
by adding, for each vertex v with pB(v) = null, an arc from v to \Sigma . Accordingly, we
know that \beta (\Phi +) = \beta (\Phi).

Consider two vertices u, v \in \Phi . The relation between u and v is classified into
three types: u and v are disjoint if u \cap v = \emptyset ; u and v are nested if u \subset v or v \subset u;
and otherwise, u and v are in conflict. For convenience, we say that u is compatible
with v if they are not in conflict. The set \Sigma contains all the other sets in \Phi . We
call \Sigma the root vertex of D\Phi . Clearly, in the finding of an optimal branching, we may
consider only inclusionwise maximal branchings. In other words, we may consider
only branchings B such that FB is a tree rooted at \Sigma .

The size of a vertex v, denoted by | v| , is the number of elements in v. Trivial
vertices and regular vertices are formally defined as follows.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

7/
23

 to
 1

28
.1

20
.2

34
.1

32
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2056 WEN-HORNG SHEU AND BIING-FENG WANG

Fig. 4. An illustrative example, in which each regular vertex is represented by a square and
each trivial vertex is in gray.

Definition 3.1. A vertex v \in \Phi is trivial if | v| = 1.

Definition 3.2. A vertex v \in \Phi is not regular (or nonregular) if it is contained
in both of a pair of conflicting vertices.

To illustrate these definitions, Figure 4(a) depicts the containment digraph D\Phi

of a set family \Phi over \Sigma = \{ a, b, c, d, e, f, g\} . For clarity, in this figure, we display
only arcs that are elementary, where an arc (u, v) is elementary if there exists no
vertex w such that (u,w) and (w,v) are both arcs of D\Phi . The set of elementary arcs
possesses the following property [1]: for any two vertices u, v, there is an arc (u, v) if
and only if there is a path consisting of only elementary arcs from u to v. For example,
according to Figure 4(a), D\Phi has an arc (v1, v10), since there is a path consisting of
only elementary arcs from v1 to v10. We remark that omitting nonelementary arcs
is simply for clarity of illustration and a branching may contain nonelementary arcs.
For example, the arc (v5, v10) in Figure 4(b) is nonelementary. In Figure 4(a), the
vertex v5 is nonregular, since v10 and v11 both contain it and are in conflict, and the
vertices v1, v2, and v3 are trivial. In particular, the root vertex \Sigma is regular, since
no vertex contains \Sigma . Note that \Sigma is nontrivial, since it has been assumed that \Phi
contains more than one set.

For a branching B, let UNR(B) denote the set of B-uncovered pairs (e, v) such that
v is nonregular. For example, in Figure 4(b), (a, v6) \in UNR(B) and (a, v8) /\in UNR(B).
Let B\ast be an optimal branching. The upper bound is established in two steps. In
the first step, we show that | UNR(B

\ast)| \leq 2 \cdot \delta (\Phi); in the second step, we show that
t(\Phi)\leq | UNR(B

\ast)| - 1. We proceed to the first step. For a branching B, the split set of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

7/
23

 to
 1

28
.1

20
.2

34
.1

32
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

PARAMETERIZED COMPLEXITY FOR SR AND DSR 2057

B, denoted by \Sigma S(B), is the set of elements e\in \Sigma such that | UB(e)| \geq 2. For example,
in Figure 4(b), a\in \Sigma S(B), since | UB(a)| = | \{ (a, v2), (a, v6), (a, v8)\} | \geq 2. The following
lemma says that the number of B\ast -uncovered pairs contributed by the elements of
\Sigma S(B

\ast) is bounded by 2 \cdot \delta (\Phi).
Lemma 3.3. Let B\ast be an optimal branching. Then,

\sum
e\in \Sigma \mathrm{S}(B\ast) | UB\ast (e)| \leq 2\cdot \delta (\Phi).

Proof. As mentioned, | UB(e)| \geq 1 for each element e \in \Sigma . Thus, each element e
of \Sigma has | UB\ast (e)| = 1 if e /\in \Sigma S(B

\ast). Since B\ast is optimal, we have \beta (\Phi) = | U(B\ast)| =\sum
e\in \Sigma | UB\ast (e)| =

\sum
e\in \Sigma (| UB\ast (e)| - 1) + | \Sigma | =

\sum
e\in \Sigma \mathrm{S}(B\ast)(| UB\ast (e)| - 1) + | \Sigma | . Since

\delta (\Phi) = \beta (\Phi) - | \Sigma | , we have \delta (\Phi) =
\sum

e\in \Sigma \mathrm{S}(B\ast)(| UB\ast (e)| - 1). Each e \in \Sigma S(B
\ast)

contributes at least one to \delta (\Phi). Thus, | \Sigma S(B
\ast)| \leq \delta (\Phi). As a result,\sum

e\in \Sigma \mathrm{S}(B\ast)

| UB\ast (e)| =
\sum

e\in \Sigma \mathrm{S}(B\ast)

(| UB\ast (e)| - 1) +
\sum

e\in \Sigma \mathrm{S}(B\ast)

1

= \delta (\Phi) + | \Sigma S(B
\ast)| \leq \delta (\Phi) + \delta (\Phi) = 2 \cdot \delta (\Phi).

Thus, the lemma holds.

Lemma 3.4. If an element e is in both of two conflicting vertices, then | UB(e)| \geq 2
for any branching B.

Proof. Let e be an element that is in both of two conflicting vertices u and w.
Consider the rooted forest FB . Since e \in u, u has a descendant u\prime such that (e,u\prime)
is a B-uncovered pair. Similarly, w has a descendant vertex w\prime such that (e,w\prime) is a
B-uncovered pair. Since u and w are in conflict, u is not a B-ancestor of w and vice
versa. Thus, they do not have any common descendant. As a result, (e,u\prime) \not = (e,w\prime).
Thus, | UB(e)| \geq 2 and the lemma holds.

Let \Sigma NR be the set of elements that are contained in a nonregular vertex. For
example, in Figure 4, we have \Sigma NR = v1 \cup v2 \cup v4 \cup v5 \cup v6 \cup v9 = \{ a, b, c, d, f\} . The
following lemma shows that \Sigma NR \subseteq \Sigma S(B) for any branching B.

Lemma 3.5. Let B be a branching. For all elements e\in \Sigma NR, we have | UB(e)| \geq 2.

Proof. Let e\in \Sigma NR be an element. Since e is in a nonregular vertex, it is in both
of a pair of conflicting vertices. By Lemma 3.4, | UB(e)| \geq 2 and hence the lemma
holds.

Recall that UNR(B) denotes the set \{ (e, v) \in U(B) | v is nonregular\} . Lemmas
3.3 and 3.5 lead to the following.

Lemma 3.6. For any optimal branching B\ast , we have | UNR(B
\ast)| \leq 2 \cdot \delta (\Phi).

Proof. Consider an optimal branching B\ast . Each (e, v) in UNR(B
\ast) has v being

nonregular and e being an element of v. Thus, each (e, v) in UNR(B
\ast) has e being an

element of a nonregular vertex. As a result, we can equivalently define UNR(B
\ast) as the

set of uncovered pairs (e, v) such that e\in \Sigma NR and v is nonregular. Let U \prime be the set
of B\ast -uncovered pairs (e, v) with e\in \Sigma NR. By definition, we have UNR(B

\ast)\subseteq U \prime . Let
U \prime \prime be the set of B\ast -uncovered pairs (e, v) with e \in \Sigma S(B

\ast). By Lemma 3.5, \Sigma NR \subseteq
\Sigma S(B

\ast) and thus we have U \prime \subseteq U \prime \prime . By Lemma 3.3, | U \prime \prime | =
\sum

e\in \Sigma \mathrm{S}(B\ast) | UB\ast (e)| \leq
2 \cdot \delta (\Phi). Consequently, we obtain | UNR(B

\ast)| \leq | U \prime | \leq | U \prime \prime | \leq 2 \cdot \delta (\Phi). Thus, the lemma
holds.

We proceed to the second step. First, we show a property of regular vertices.

Lemma 3.7. If a vertex v is regular, all vertices containing v are regular.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

7/
23

 to
 1

28
.1

20
.2

34
.1

32
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2058 WEN-HORNG SHEU AND BIING-FENG WANG

Proof. Let v be a regular vertex. Consider a fixed vertex u \supset v. Suppose, for
proof by contradiction, that u is nonregular. By definition, u is contained in both of a
pair of conflicting vertices. Since u\supset v, these two vertices also both contain v, which
contradicts the fact that v is regular. Thus, the lemma holds.

A consequence of Lemma 3.7 is as follows. Let VNR be the set of nonregular
vertices and VR be the set of regular vertices. Then, there is no arc of D\Phi which
starts from a vertex of VR and ends at a vertex of VNR. Consider a branching B.
According to FB , we partition VNR into the following subsets:

L1(B): the set of nonregular vertices v with in-degree= 0 and | v| = 1;
L2(B): the set of nonregular vertices v with in-degree= 0 and | v| > 1;
N1(B): the set of nonregular vertices v with in-degree= 1; and
N2(B): the set of nonregular vertices v with in-degree > 1.

For example, in Figure 4(b), we have L1(B) = \{ v1, v2\} ,L2(B) = \{ v5, v6\} ,N1(B) =
\{ v9\} , and N2(B) = \{ v4\} . Vertices in L1(B) \cup L2(B) are nonregular leaves of FB and
vertices in N1(B)\cup N2(B) are nonregular internal nodes of FB . The following lemma
shows that | N2(B)| , the number of nonregular internal nodes with in-degree more
than one, is bounded by the number of nonregular leaves.

Lemma 3.8. For any branching B, we have | N2(B)| \leq | L1(B)| + | L2(B)| - 1.

Proof. Let X be the subgraph of FB induced by VNR, which contains all the
nonregular vertices and the arcs connecting pairs of them. By Lemma 3.7, all children
of a nonregular vertex are nonregular. As a result, for each vertex in VNR, its in-
degree in X is the same as in FB . Thus, X is a directed rooted forest with leaf
set L1(B) \cup L2(B) and with internal node set N1(B) \cup N2(B). It is known that a
rooted tree (or forest) of k leaves contains at most k - 1 internal nodes that have
more than one child, where k \geq 1 is an integer [4]. Therefore, there are at most
| L1(B) \cup L2(B)| - 1 internal nodes with in-degree > 1 in X. That is, | N2(B)| \leq
| L1(B)\cup L2(B)| - 1 = | L1(B)| + | L2(B)| - 1. Thus, the lemma holds.

Lemma 3.9. For any branching B, we have | UNR(B)| \geq | N1(B)| + | L1(B)| + 2 \cdot
| L2(B)| .

Proof. For any v \in L1(B) \cup L2(B), since v has no B-child, all elements of v are
B-uncovered. Therefore, there are at least | L1(B)| + 2 \cdot | L2(B)| B-uncovered pairs
(e, v) with v \in L1(B)\cup L2(B). Consider a nonregular vertex v \in N1(B). By definition,
v has exactly one B-child, say, v\prime . Since v and v\prime are distinct, at least one element of
v is B-uncovered. Therefore, there are at least | N1(B)| B-uncovered pairs (e, v) with
v \in N1(B). Consequently, we have | UNR(B)| \geq | N1(B)| + | L1(B)| + 2 \cdot | L2(B)| and
thus the lemma holds.

Recall that t(\Phi) is the number of vertices of D\Phi that are not trivial and not
regular. We are ready to prove that t(\Phi)\leq | UNR(B

\ast)| - 1.

Lemma 3.10. For any optimal branching B\ast , we have t(\Phi)\leq | UNR(B
\ast)| - 1.

Proof. Let B\ast be an optimal branching. Since all vertices in L1(B
\ast) are trivial,

we have

t(\Phi) = | N1(B
\ast)| + | N2(B

\ast)| + | L2(B
\ast)| (by the definition of t(\Phi))

\leq | N1(B
\ast)| + | L1(B

\ast)| + 2 \cdot | L2(B
\ast)| - 1 (by Lemma 3.8)

\leq | UNR(B
\ast)| - 1 (by Lemma 3.9).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

7/
23

 to
 1

28
.1

20
.2

34
.1

32
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

PARAMETERIZED COMPLEXITY FOR SR AND DSR 2059

Fig. 5. D\Phi 3
(only elementary arcs are depicted) and B3.

Lemmas 3.6 and 3.10 immediately lead to the following.

Theorem 3.11. t(\Phi)\leq 2 \cdot \delta (\Phi) - 1.

The following theorem gives an upper bound on the number of nonregular vertices,
which is needed for analyzing the time complexity of our DSR algorithm.

Theorem 3.12. | VNR| \leq 3 \cdot \delta (\Phi) - 1.

Proof. Let W be the set of nonregular trivial vertices and let \Sigma W =
\bigcup

v\in W v.
Vertices in W are trivial and distinct. Thus, we have | \Sigma W | = | W | . Since | VNR| =
t(\Phi)+ | W | = t(\Phi)+ | \Sigma W | and t(\Phi)\leq 2 \cdot \delta (\Phi) - 1, it suffices to show that | \Sigma W | \leq \delta (\Phi).
Consider an optimal branching B\ast . By Lemma 3.5, \Sigma NR \subseteq \Sigma S(B

\ast). As shown in
the proof of Lemma 3.3, | \Sigma S(B

\ast)| \leq \delta (\Phi). Since \Sigma W \subseteq \Sigma NR \subseteq \Sigma S(B
\ast), we have

| \Sigma W | \leq | \Sigma S(B
\ast)| \leq \delta (\Phi) and thus the theorem holds.

To conclude this section, we remark that the upper bounds in Theorems 3.11
and 3.12 are almost tight. We first show that for any integer h \geq 1, a set family \Phi h

with \delta (\Phi h) = h + 1 and t(\Phi h) = 2 \cdot \delta (\Phi h) - 3 can be constructed. Consider a fixed
h\geq 1. Define \Phi h as a set family over a set \Sigma h as follows:

(1) the ground set \Sigma h consists of h+ 3 elements x, y, z, a1, a2, a3, . . ., ah; and
(2) the set family \Phi h consists of 2h+ 3 sets \Sigma h, v1, v2, u1, u2, u3, . . ., uh, w1,

w2, w3, . . . , wh, where v1 = \Sigma h - \{ z\} , v2 = \Sigma h - \{ y\} , ui = \{ x,a1, a2, . . . , ai\}
for i= 1,2, . . . , h, and wi = \{ a1, a2, . . . , ai\} for i= 1,2, . . . , h.

Figure 5 depicts D\Phi h
for h = 3. As in Figure 4, regular vertices are represented by

squares. Note that v1 and v2 are in conflict. The vertices \Sigma h, v1, v2 are regular. All
the other vertices are contained in both of v1 and v2 and thus are nonregular. Only
the vertex w1 is trivial. Thus, we have t(\Phi h) = 2 \cdot h - 1. Let Bh be the branching such
that pBh

(v1) = pBh
(v2) = \Sigma h, pBh

(uh) = v1, pBh
(wh) = v2, and for i= 1,2, . . . , h - 1,

pBh
(wi) = wi+1 and pBh

(ui) = ui+1. See Figure 5 for B3. As in Figure 4, uncovered
elements are underlined. In Bh, each element in \Sigma h - \{ y, z\} contributes two uncovered
pairs and each of y and z contributes one uncovered pair. Thus, | U(Bh)| = 2 \cdot h+ 4.
In the following, we show that Bh is optimal by showing that any branching has at
least 2 \cdot h+4 uncovered pairs. Consider an arbitrary branching B. Since all elements
in \Sigma h - \{ y, z\} are contained in the nonregular vertex uh, by Lemma 3.5, each of them
contributes at least two B-uncovered pairs. Moreover, each of y and z contributes
at least one B-uncovered pair. Thus, | U(B)| is at least 2 \cdot (| \Sigma h| - 2) + 2 = 2 \cdot h+ 4.
Therefore, Bh is optimal, and we have \delta (\Phi h) = | U(Bh)| - | \Sigma h| = h+ 1 and t(\Phi h) =
2 \cdot h - 1 = 2 \cdot \delta (\Phi h) - 3.

We proceed to show that the upper bound in Theorem 3.12 is almost tight. More
specifically, we show that for any integer h \geq 1, a set family \Phi \prime

h with \delta (\Phi \prime
h) = h+ 1

and | VNR| = 3 \cdot \delta (\Phi \prime
h) - 3 can be constructed. (See Figure 6 for an example.) Consider

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

7/
23

 to
 1

28
.1

20
.2

34
.1

32
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2060 WEN-HORNG SHEU AND BIING-FENG WANG

Fig. 6. D\Phi \prime
3
(only elementary arcs are depicted) and B\prime

3.

a fixed h\geq 1. Let \Phi \prime
h be the family obtained from \Phi h by adding h sets t1, t2, . . . , th,

where t1 = \{ x\} and ti = \{ ai\} for i= 2,3, . . . , h. Since each ti is contained in both v1
and v2, it is nonregular. Thus, for the digraph D\Phi \prime

h
, we have | VNR| = | \{ u1, u2, . . . , uh,

w1, w2, . . . , wh, t1, t2, . . . , th\} | = 3h. Let B\prime
h =Bh \cup \{ (t1, v2)\} \cup \{ (ti,wi) | 2\leq i\leq h\}

be a branching of D\Phi \prime
h
. Clearly, | U(B\prime

h)| = | U(Bh)| = 2h + 4. Using the same
arguments for proving the optimality of Bh, we know that B\prime

h is optimal for D\Phi \prime
h
.

Thus, \delta (\Phi \prime
h) = | U(B\prime

h)| - | \Sigma h| = h+ 1. As a result, | VNR| = 3h= 3\delta (\Phi \prime
h) - 3.

4. An algorithm for the branching formulation. Let m= | \Sigma | and n= | \Phi | .
This section presents an O\ast (2min(| \Phi | ,2\delta (\Phi)))-time algorithm for UB. Recall that our
algorithm consists of three phases: Phase 1 removes trivial vertices, Phase 2 prede-
termines the parent of each regular vertex, and Phase 3 finds an optimal branching
using dynamic programming. The containment digraph D\Phi is precomputed, which
requires O(mn2) time [14].

4.1. Phase 1. For a trivial vertex v, we define the preferred-parent of v to be
the vertex u such that u\supset v and its size | u| is smallest (with ties broken arbitrarily).
In Figure 7(a), v5 is contained in \Sigma , v1, and v2; and the preferred-parent of v5 is v1.
The following theorem says that trivial vertices can be removed without changing the
cost of an optimal branching. (See Figure 7 for an example.)

Theorem 4.1. Let v = \{ e\} be a trivial vertex of D\Phi and let D\prime be the digraph
obtained from D\Phi by removing v and all its incident arcs. Let \beta \prime be the cost of an
optimal branching of D\prime . Then, \beta \prime = \beta (\Phi).

Proof. Let B be an optimal branching of D\Phi . Recall that in the finding of an
optimal branching, we may assume that FB is a tree. Let p be the parent of v in FB .
By deleting the arc (v, p) from B, we obtain a branching B\prime of D\prime . Since v is a leaf of
FB , (e, v) is B-uncovered. The child sets of p in B and B\prime differ only in v; and for every
vertex in \Phi - \{ v, p\} , its child sets in B and B\prime are the same. As a result, if (e, p) is
B\prime -uncovered, U(B\prime) =U(B) - \{ (e, v)\} \cup \{ (e, p)\} ; otherwise, U(B\prime) =U(B) - \{ (e, v)\} .
In either case, | U(B\prime)| \leq | U(B)| . Hence, \beta \prime \leq | U(B\prime)| \leq | U(B)| = \beta (\Phi).

We proceed to show that \beta (\Phi)\leq \beta \prime . Let B\prime be an optimal branching of D\prime . Let u
be the preferred-parent of v. We obtain from B\prime a branching B of D\Phi by adding the
arc (v,u). (See Figure 7(c), (d).) Since | v| =1 and u is the smallest vertex strictly
containing v, we know that (e,u) is B\prime -uncovered. As a result, it is easy to conclude
that U(B) = U(B\prime) - \{ (e,u)\} \cup \{ (e, v)\} . Therefore, \beta (\Phi) \leq | U(B)| = | U(B\prime)| = \beta \prime .
This completes the proof.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

7/
23

 to
 1

28
.1

20
.2

34
.1

32
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

PARAMETERIZED COMPLEXITY FOR SR AND DSR 2061

Fig. 7. An illustrative example, in which trivial vertices are in gray.

We remark that the proof of Theorem 4.1 also exhibits that given the preferred-
parent of v, we can obtain in O(1) time an optimal branching of D\Phi from an optimal
branching of D\prime .

Our Phase 1 algorithm works as follows. First, find all trivial vertices. Next, for
each trivial vertex v, compute its preferred-parent as the vertex u such that (v,u) is
an arc of D\Phi and | u| is smallest. The preferred-parent of each trivial vertex is stored
so that an optimal solution of the original digraph can be efficiently recovered from an
optimal branching of the reduced digraph. Finally, remove all trivial vertices. Since
D\Phi contains n vertices and O(n2) arcs, it is easy to implement Phase 1 in O(n2) time.

4.2. Phase 2. Phase 2 predetermines the parent of each regular vertex. Recall
that a vertex of D\Phi is regular if it is not contained in both of a pair of conflicting
vertices.

Lemma 4.2. Let v be a vertex and (u1, u2, . . . , us - 1, us = \Sigma) be the sequence of
vertices strictly containing v, in nondecreasing order of their sizes. Then, v is regular
if and only if u1 \subset u2 \subset \cdot \cdot \cdot \subset us.

Proof. If u1 \subset u2 \subset \cdot \cdot \cdot \subset us, any pair of vertices strictly containing v are not in
conflict and thus v is regular. Assume that v is regular. Consider two vertices uj and
uj+1. Since they both contain v, they are not disjoint. In addition, since v is regular,
they are not in conflict. As a result, they are nested. Therefore, the lemma holds.

Lemma 4.2 indicates that no two vertices containing a regular vertex v have the
same size. Recall that VR is the set of regular vertices. For each vertex v \in VR, the
predetermined parent of v, denoted by \pi (v), is the smallest vertex strictly containing
v. Note that \pi (v) is null if and only if v is the root vertex \Sigma . Let BR be the
set of arcs \{ (v,\pi (v)) | v \in VR and v \not = \Sigma \} . For the example in Figure 4(a), BR =
\{ (v7, v10), (v8, v10), (v10,\Sigma), (v11,\Sigma)\} . Let TR be the digraph with vertex set VR and
arc set BR. By Lemma 3.7, all vertices containing a regular vertex are regular. Thus,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

7/
23

 to
 1

28
.1

20
.2

34
.1

32
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2062 WEN-HORNG SHEU AND BIING-FENG WANG

Fig. 8. An illustration for Case 1 in the proof of Lemma 4.4, in which s= 5 and j = 4.

each arc in BR connects a pair of two regular vertices, from which we conclude that TR

is a tree rooted at \Sigma . Let (u1, u2, . . . , us - 1, us =\Sigma) be the sequence of vertices strictly
containing a regular vertex v, in nondecreasing order of their sizes. By definition,
\pi (v) = u1. Consider a fixed vertex uj , 1\leq j < s. A vertex containing uj also contains
vi. Therefore, uj+1 is the smallest vertex strictly containing uj and thus we have
\pi (uj) = uj+1. Consequently, we obtain the following.

Lemma 4.3. Let v be a regular vertex. The path from v's parent to the root \Sigma in
TR contains the sequence of vertices strictly containing v, in nondecreasing order of
their sizes.

Lemma 4.3 indicates that a vertex u contains a regular vertex v if and only if u
is on the path from v's parent to the root in TR. Clearly, BR is a branching of D\Phi .
We proceed to show that in the finding of an optimal branching, we can consider only
branchings that contain BR as a subset.

Consider a branching B which does not contain BR as a subset. Let r be the
largest regular vertex such that pB(r) \not = \pi (r) (with ties broken arbitrarily). Since
pB(\Sigma) = \pi (\Sigma) = null, r \not =\Sigma and thus \pi (r) \not = null. A regularization operation on B is
defined as reassigning pB(r) to be \pi (r).

Lemma 4.4. Let B\prime be the branching obtained from a branching B by performing
a regularization operation. Then, U(B)\supseteq U(B\prime).

Proof. Let r be the regular vertex whose parent is reassigned by the regularization
operation. Two cases are considered.

Case 1: pB(r) \not = null. (See Figure 8.) Let W = (u1, u2, . . . , us - 1, us = \Sigma) be the
sequence of vertices strictly containing r, in nondecreasing order of their sizes. By
Lemma 4.3, we have \pi (r) = u1 and pB(uj) = \pi (uj) = uj+1 for 1\leq j < s. Since pB(r)
strictly contains r, pB(r) \not = u1, and W contains all vertices which strictly contain r,
we know that there is a vertex uj = pB(r), where 1< j \leq s. Since uj - 1 is a B-child of
uj and uj - 1 \supset r, deleting the arc (r,uj) from B does not induce any new uncovered
element in uj . As a result, U(B)\supseteq U(B\prime) can be easily concluded.

Case 2: pB(r) = null. In this case, we have B \subseteq B\prime and thus U(B)\supseteq U(B\prime).
Therefore, the lemma holds.

Let B be an optimal branching not containing BR. By repeatedly performing
a regularization operation, B can be transformed into a branching which contains

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

7/
23

 to
 1

28
.1

20
.2

34
.1

32
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

PARAMETERIZED COMPLEXITY FOR SR AND DSR 2063

all arcs in BR. By Lemma 4.4, this transformation does not increase the number of
uncovered pairs. Therefore, we have the following.

Theorem 4.5. There exists an optimal branching B of D\Phi such that B \supseteq BR.

Our Phase 2 algorithm finds all regular vertices and their predetermined parents
as follows. First, we create a sequence L containing all vertices ofD\Phi , in nondecreasing
order of their sizes. Next, for each vertex v, we determine whether it is regular by
extracting from L the sequence (u1, u2, . . . , us - 1, us =\Sigma) of vertices strictly containing
v and then check whether there is an arc (uj , uj+1) for 1\leq j < s, and if v is regular,
we set \pi (v) = u1. The correctness is ensured by Lemma 4.2. The computation of L
requires O(n lgn) time. The determination for each vertex takes O(n) time. Thus,
Phase 2 requires O(n2) time.

4.3. Phase 3. Phase 3 finds an optimal branching using dynamic program-
ming. The finding is done in time O(mn2min(n,2\delta (\Phi)) + n23min(n,2\delta (\Phi))) or O(mn5

lgmn lg lgmn2min(n,2\delta (\Phi))), depending on the implementation. Recall that VR and
VNR are, respectively, the sets of regular and nonregular vertices. We first topologi-
cally sort the vertices of D\Phi into a sequence (v1, v2, . . . , vn), so that (vi, vj) is an arc
only if i < j. For 1 \leq i \leq n, let Vi = \{ vj | j \leq i\} and D\Phi (Vi) be the subgraph of D\Phi

induced by Vi. Consider a fixed Vi. A branching on Vi is a branching of D\Phi (Vi), in
which the parent of each vertex v \in Vi is either null or a vertex in Vi. For a branching
B and a vertex vj \in \Phi , define U j

B to be the set of B-uncovered elements in vj . The
cost of a branching B on Vi, denoted by costi(B), is the number of uncovered pairs
(e, vj) with vj \in Vi. That is, costi(B) =

\sum
1\leq j\leq i | U

j
B | .

After Phase 2, the parent, \pi (v), of each regular vertex v has been predetermined.
Thus, our problem is to optimally assign the parent of each nonregular vertex. Let B
be a branching on Vi. We say that B obeys BR if the following holds: for each regular
vertex vj \in Vi, if \pi (vj) \in Vi, then pB(vj) = \pi (vj); otherwise, pB(vj) = null. We say
that a nonregular vertex vj is assigned in B if pB(vj) \not = null.

Consider a fixed integer i \in \{ 1,2, . . . , n\} . Let S be a subset of VNR. An (i, S)-
branching is a branching B such that

(1) B is a branching on Vi;
(2) B obeys BR; and
(3) the set of nonregular vertices assigned in B is S.

Figure 9 gives two examples. Define f [i, S] to be the minimum cost of an (i, S)-
branching and if such a branching does not exist, we define f [i, S] =\infty . Note that
since Vn is the vertex set of D\Phi , a branching on Vn is a branching of D\Phi and thus
f [n,VNR] = \beta (\Phi). We proceed to derive a recurrence for f [i, S]. Clearly, if i = 1, we
have f [i,\emptyset] = | v1| and f [i, S] =\infty for S \not = \emptyset . Consider the case i \geq 2. Let S \subseteq VNR

be a subset. Assume that an (i, S)-branching exists and let B be an optimal one.
Denote by H the child set of vi in B. The branching B is decomposed into two parts:
B1 = \{ (c, vi) | c\in H\} and B2 =B - B1. Let HNR be the set of nonregular B-children
of vi. We have the following.

Lemma 4.6. B2 is an optimal (i - 1, S - HNR)-branching.

Proof. SinceB2 is obtained fromB by removing the arcs directed from the vertices
in H toward vi, it is easy to see that it is an (i - 1, S - HNR)-branching. The cost
of B is equal to

\sum
1\leq j\leq i | U

j
B | = | U i

B | +
\sum

1\leq j\leq i - 1 | U
j
B | = | U i

B | + costi - 1(B2). Note

that | U i
B | = | vi| - |

\bigcup
c\in H c| , which is determined by only the arcs in B1. Let X be

an optimal (i - 1, S - HNR)-branching. If B2 is not optimal, by replacing B2 with X

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

7/
23

 to
 1

28
.1

20
.2

34
.1

32
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2064 WEN-HORNG SHEU AND BIING-FENG WANG

Fig. 9. Two illustrative examples.

in B, we obtain an (i, S)-branching X \cup B1 with less cost | U i
B1
| +

\sum
1\leq j\leq i - 1 | U

j
X | =

| U i
B | + costi - 1(X), which contradicts the optimality of B. Therefore, B2 is optimal

and the lemma holds.

Let Hi
R be the set of BR-children of vi. Since B obeys BR, we have H =Hi

R\cup HNR

and | U i
B | = | vi| - |

\bigcup
c\in H c| = | vi| - |

\bigcup
c\in Hi

\mathrm{R}\cup H\mathrm{N}\mathrm{R}
c| . Therefore, according to Lemma 4.6,

f [i, S] = f [i - 1, S - HNR] + | vi| - |
\bigcup

c\in Hi
\mathrm{R}\cup H\mathrm{N}\mathrm{R}

c| . Consequently, we obtain

(4.1)

f [i, S] =min

\biggl\{
f [i - 1, S - HNR]

+ | vi| -
\bigm| \bigm| \bigm| \bigcup
c\in Hi

\mathrm{R}\cup H\mathrm{N}\mathrm{R}

c
\bigm| \bigm| \bigm| | HNR \subseteq S and

\bigcup
c\in H\mathrm{N}\mathrm{R}

c\subseteq vi

\biggr\}
=min\{ f [i - 1, S - T] + g[i, T] | T \subseteq S\} ,

where g[i, T] = | vi| - |
\bigcup

c\in Hi
\mathrm{R}\cup T c| if

\bigcup
c\in T c\subseteq vi and otherwise g[i, T] =\infty .

The derivation of (4.1) assumes that an (i, S)-branching exists. Consider the case
in which no (i, S)-branching exists. We show that recurrence (4.1) still holds. That is,
we show that f [i - 1, S - T]+g[i, T] =\infty for all T \subseteq S. Suppose, by contradiction, that
f [i - 1, S - T]+g[i, T] \not =\infty for some subset T \subseteq S. Since f [i - 1, S - T] \not =\infty , there exists
an (i - 1, S - T)-branching X. Since g[i, T] \not =\infty , we have

\bigcup
c\in T c \subseteq vi. In addition,

since the vertices are arranged in topological order, every vertex v \in T is in Vi - 1. By
definition, pX(v) = null for each v \in Hi

R \cup T . As a result, X \cup \{ (c, vi) | c\in Hi
R \cup T\} is

an (i, S)-branching and we have a contradiction.
Based on recurrence (4.1), we give two implementations of Phase 3. The first one

is given in Algorithm 4.1.
The time complexity is analyzed as follows. Lines 1--3 require O(n2 + 2| V\mathrm{N}\mathrm{R}|)

time. Note that after Phase 1, all nonregular vertices are not trivial and thus we
have | VNR| = t(\Phi). Consider a fixed iteration of the for-loop in lines 4--17. Each
vertex v \in VNR contains at most m elements. Thus, the computation of g[i, \cdot] in
line 6 can be implemented in O(m2| V\mathrm{N}\mathrm{R}|) time. For a fixed S, the for-loop in lines
10--15 performs O(2| S|) times, each for a subset T of S. According to line 7, this
for-loop runs for all S \subseteq VNR. Each set operation on two subsets of VNR takes
O(| VNR|) time. Thus, for a fixed i, the total time spent by lines 13--14 is O(| VNR| \times \sum

S\subseteq V\mathrm{N}\mathrm{R}
2| S|) = O(| VNR| \times

\sum
0\leq k\leq | V\mathrm{N}\mathrm{R}| C(| VNR| , k)2k), which is O(| VNR| \times 3| V\mathrm{N}\mathrm{R}|) by

the binomial theorem [5]. As a result, the for-loop in lines 4--17 requires O(mn2| V\mathrm{N}\mathrm{R}| +
n| VNR| 3| V\mathrm{N}\mathrm{R}|) time. Clearly, lines 19--26 take O(n| VNR|) time. Consequently, the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

7/
23

 to
 1

28
.1

20
.2

34
.1

32
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

PARAMETERIZED COMPLEXITY FOR SR AND DSR 2065

Algorithm 4.1 Phase 3---Implementation 1.
Input: D\Phi and BR

Output: an optimal branching B\ast

1: topologically sort the vertices in D\Phi

2: for each S \subseteq VNR do f [1, S]\leftarrow \infty
3: f [1,\emptyset]\leftarrow | v1|
4: for i= 2,3, . . . , n do
5: begin
6: compute g[i, S] for all S \subseteq VNR

7: for each S \subseteq VNR do/* compute f [i, S]
8: begin
9: f [i, S]\leftarrow \infty
10: for each T \subseteq S do
11: if (f [i - 1, S - T] + g[i, T]< f [i, S]) then
12: begin
13: f [i, S]\leftarrow f [i - 1, S - T] + g[i, T]
14: \tau [i, S]\leftarrow T/* for backtracking an optimal branching
15: end
16: end
17: end
18: /* solution recovery
19: B\ast \leftarrow \emptyset
20: S\ast \leftarrow VNR

21: for i= n,n - 1, . . . ,2 do/* find the child set of vi
22: T \ast \leftarrow \tau [i, S\ast]
23: B\ast \leftarrow B\ast \cup \{ (c, vi) | c\in Hi

R \cup T \ast \}
24: S\ast \leftarrow S\ast - T \ast

25: end
26: return B\ast

overall time complexity is O(mn2| V\mathrm{N}\mathrm{R}| +n| VNR| 3| V\mathrm{N}\mathrm{R}| +n| VNR|), which is O(mn2t(\Phi)+
nt(\Phi)3t(\Phi)) when substituting t(\Phi) for | VNR| .

We proceed to present the second implementation. For a set P and two functions
J,K : 2P \rightarrow \BbbZ , the subset convolution of J and K over the integer min-sum semiring
is defined for all S \subseteq P by (J \ast K)(S) =min\{ J(S - T) +K(T) | T \subseteq S\} . We need the
following.

Lemma 4.7 ([2, 5]). The subset convolution over the integer min-sum semiring
can be computed in time O(2| P | | P | 3X lg(| P | X) lg lg(| P | X)), provided that the range
of the input functions is \{ - X, - X + 1, . . . ,X\} .

According to (4.1), the computation of f [i, \cdot] can be seen as a subset convolution
within the min-sum semiring of integers by setting P = VNR and defining J(S) =
f [i - 1, S] and K(S) = g[i, S] for all S \subseteq P . The cost of a branching is at most\sum

1\leq i\leq n | vi| \leq mn. To apply Lemma 4.7, we use N = mn+ 1 to represent \infty . That
is, when no (i, S)-branching exists, we define f [i, S] = N . Then, Lemma 4.7 can be
applied by setting X =N . Our second implementation is given in Algorithm 4.2.

The bottleneck of lines 1--8 is the computation of g[i, \cdot] and f [i, \cdot] in lines 6 and
7. Line 6 requires O(m2| V\mathrm{N}\mathrm{R}|) time. By Lemma 4.7, for a fixed i, line 7 requires

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

7/
23

 to
 1

28
.1

20
.2

34
.1

32
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2066 WEN-HORNG SHEU AND BIING-FENG WANG

Algorithm 4.2 Phase 3---Implementation 2.
Input: D\Phi and BR

Output: an optimal branching B\ast

1: topologically sort the vertices in D\Phi

2: for each S \subseteq VNR do f [1, S]\leftarrow N
3: f [1,\emptyset]\leftarrow | v1|
4: for i= 2,3, . . . , n do/* compute f [i, \cdot]
5: begin
6: compute g[i, S] for all S \subseteq VNR

7: compute f [i, S] for all S \subseteq VNR by applying Lemma 4.7
8: end
9: /* solution recovery
10: B\ast \leftarrow \emptyset
11: S\ast \leftarrow VNR

12: for i= n,n - 1, . . . ,2 do/* find the child set of vi
13: begin
14: T \ast \leftarrow argmin\{ f [i - 1, S\ast - T] + g[i, T] | T \subseteq S\ast \}
15: B\ast \leftarrow B\ast \cup \{ (c, vi) | c\in Hi

R \cup T \ast \}
16: S\ast \leftarrow S\ast - T \ast

17: end
18: return B\ast

O(2| P | | P | 3X lg(| P | X) lg lg(| P | X)) = O(2| V\mathrm{N}\mathrm{R}| | VNR| 3N lg(| VNR| N)lg lg(| VNR| N)) time.
Thus, lines 1--8 take a total of O(mn2| V\mathrm{N}\mathrm{R}| +nN | VNR| 3 lg(| VNR| N) lg lg(| VNR| N)2| V\mathrm{N}\mathrm{R}|)
time. Line 14 can be implemented in O(| VNR| 2| V\mathrm{N}\mathrm{R}|) time. Thus, the for-loop in lines
12--17 requires O(n| VNR| 2| V\mathrm{N}\mathrm{R}|) time. Consequently, the overall time complexity is
O(mn2| V\mathrm{N}\mathrm{R}| + nN | VNR| 3 lg(| VNR| N) lg lg(| VNR| N)2| V\mathrm{N}\mathrm{R}|), which is O(mn2t(\Phi)3 lgmn
lg lgmn2t(\Phi)) when substituting t(\Phi) for | VNR| and mn + 1 for N . Recall that the
precomputation of D\Phi takes O(mn2) time, and Phases 1 and 2 take O(n2) time. In
summary, we obtain the following.

Theorem 4.8. UB can be solved in time O(mn2 + mn2t(\Phi) + nt(\Phi)3t(\Phi)) or
O(mn2t(\Phi)3 lgmn lg lgmn2t(\Phi)), where m= | \Sigma | and n= | \Phi | .

By Theorem 4.8 and the upper bound of t(\Phi) in Theorem 3.11, we obtain the
following.

Theorem 4.9. UB can be solved in time O(mn2 + mn2min(n,2\delta (\Phi)) +
n23min(n,2\delta (\Phi))) or O(mn5 lgmn lg lgmn2min(n,2\delta (\Phi))), where m= | \Sigma | and n= | \Phi | .

Recall that \varepsilon (M) = \delta (\Phi M). Since | \Sigma M | =m and | \Phi M | = n, combining Theorems
2.3 and 4.9 immediately yields the following, which says that SR is fixed-parameter
tractable.

Theorem 4.10. SR can be solved in time O(mn2 + mn2min(n,2\varepsilon (M)) +
n23min(n,2\varepsilon (M))) or O(mn5 lgmn lg lgmn2min(n,2\varepsilon (M))).

5. Algorithms for CSR, DSR, and CDSR. This section gives algorithms for
CSR, DSR, and CDSR.

5.1. CSR. Recall that CSR is a constrained version of SR, in which only the rows
in a given subset Q can be split. We denote by \{ r1, r2, . . . , rm\} the set of rows of M .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

7/
23

 to
 1

28
.1

20
.2

34
.1

32
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

PARAMETERIZED COMPLEXITY FOR SR AND DSR 2067

Let M \prime be a row split of M . By definition, there is a valid partition \{ R1,R2, . . . ,Rm\}
of the set of rows of M \prime such that for all i \in \{ 1, . . . ,m\} , ri is the bitwise OR of
the rows in Ri. A row in a conflict-free row split of M is redundant if the matrix
obtained by removing it is still a conflict-free row split of M . A conflict-free row split
is reduced if it contains no redundant rows. Clearly, to solve SR (and CSR), only
reduced conflict-free row splits need to be considered. Hujdurovi\'c et al. gave the
following.

Theorem 5.1 ([14]). Let M \in \{ 0,1\} m\times n be a binary matrix. The following holds:
1. Any branching B of D\Phi M

can be transformed to a conflict-free row split
M \prime , equipped with a valid partition \{ R1,R2, . . . ,Rm\} , of M such that | Ri| =
| UB(ri)| holds for each i.

2. Any reduced conflict-free row split M \prime , equipped with a valid partition
\{ R1,R2, . . . ,Rm\} , of M can be transformed to a branching B of D\Phi M

such
that | Ri| = | UB(ri)| holds for each i.

In CSR, a conflict-free row split, equipped with a valid partition \{ R1,R2, . . . ,Rm\} ,
is feasible if | Ri| = 1 for each ri /\in Q. By Theorem 5.1, a branching B of D\Phi M

with
| UB(ri)| = 1 for each ri /\in Q corresponds to a feasible conflict-free row split; and each
feasible reduced conflict-free row split corresponds to a branching B with | UB(ri)| = 1
for each ri /\in Q. As a result, CSR is equivalent to the following constrained uncovering
branching problem (CUB): given a set family \Phi and a subset Q of its ground set \Sigma , find
a feasible branching of D\Phi with the minimum cost, where a branching B is feasible if
| UB(ri)| = 1 for each ri /\in Q.

We proceed to present an algorithm for CUB. For each element e \in \Sigma , let V | e
be the set of vertices containing e in D\Phi . An element e \in \Sigma is chain-like if any two
vertices u, v \in V | e are nested. We have the following.

Lemma 5.2. If an element e is chain-like, every vertex in V | e is regular.

Proof. Suppose, by contradiction, that a vertex v \in V | e is not regular. By defini-
tion, v is contained in both of two conflicting vertices u,w. Since v\subset u and v\subset w, we
know that u and w are both in V | e. Since u and w are in conflict, e is not chain-like
and we have a contradiction. Thus, the lemma holds.

Lemma 5.3. An element e is chain-like if and only if there exists a branching B
with | UB(e)| = 1.

Proof. Consider a fixed element e. If | UB(e)| = 1 for some branching B, by
Lemma 3.4, there does not exist any pair of conflicting vertices in V | e and thus e is
chain-like. Therefore, the if-part holds. Assume that e is chain-like. Recall that \pi (v)
is the smallest vertex strictly containing a regular vertex v and BR is the set of arcs
\{ (v,\pi (v)) | v is regular\} . We complete the proof by showing | UB\mathrm{R}(e)| = 1. Let W =
(u1, u2, . . . , us = \Sigma) be the sequence containing all vertices of V | e in nondecreasing
order of their sizes. Consider a vertex ui in W , 1 \leq i < s. By Lemma 5.2, ui is
regular. Since e \in ui, \pi (ui) contains e and thus is also in W . Furthermore, since
any two vertices in W are nested, we know that \pi (ui) = ui+1. Therefore, in the
branching BR, the target pairs (e,uj) are covered for j = 2,3, . . . , s. As a result,
| UB\mathrm{R}(e)| = | \{ (e,u1)\} | = 1 and thus the lemma holds.

Let Q\prime = \Sigma - Q. By Lemma 5.3, if any element in Q\prime is not chain-like, there is
no solution. Suppose that all elements in Q\prime are chain-like. Let B\ast be the branching
obtained by running our UB algorithm. Since B\ast \supseteq BR, by the proof of Lemma 5.3,
| UB\ast (e)| = 1 for all e \in Q\prime . Thus, B\ast is feasible. Since B\ast is optimal for (the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

7/
23

 to
 1

28
.1

20
.2

34
.1

32
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2068 WEN-HORNG SHEU AND BIING-FENG WANG

unconstrained) UB, it is optimal for CUB. Consequently, CUB can be solved as fol-
lows: determine whether all elements in Q\prime are chain-like; if not, report that there is
no solution, and otherwise run our UB algorithm and return its output.

Let L be the sequence containing all vertices ofD\Phi , in nondecreasing order of their
sizes. In section 4.2, it has been shown that using L whether a vertex in D\Phi is regular
can be determined in O(n) time. Similarly, by the definition of chain-like elements,
using L whether an element in Q\prime is chain-like can be determined in O(n) time. Thus,
whether all elements in Q\prime are chain-like can be determined in O(n lgn+mn) time.
Therefore, the time complexities in Theorem 4.9 hold for CUB as well. Consequently,
we obtain the following.

Theorem 5.4. CSR can be solved in time O(mn2 + mn2min(n,2\varepsilon (M)) +
n23min(n,2\varepsilon (M))) or O(mn5 lgmn lg lgmn2min(n,2\varepsilon (M))).

5.2. DSR. Recall that DSR is to find a conflict-free row split of M with the
minimum number of distinct rows. DSR admits a formulation similar to UB. Let \Phi
be a set family over a set \Sigma . For a branching B of D\Phi , we say that a vertex v \in \Phi
is B-irreducible if there exists an element e \in v such that (e, v) is B-uncovered. We
denote by I(B) the set of B-irreducible vertices. For the example in Figure 4(b), the
set of B-irreducible vertices is \{ v1, v2, v3, v5, v6, v8, v9, v11\} . Let \zeta (\Phi) be the minimum
number of B-irreducible vertices over all branchings B of D\Phi . Hujdurovi\'c et al. [14]
showed that DSR is equivalent to the following optimization problem.

Definition 5.5. The irreducing branching problem (IB):
Input: A set family \Phi .
Task: Find a branching B of D\Phi with | I(B)| = \zeta (\Phi).

Theorem 5.6 ([14]). For a binary matrix M \in \{ 0,1\} m\times n, the following holds:
1. Any branching B of \Phi M can be transformed to a conflict-free row split M \prime ,

equipped with a valid partition \{ R1,R2, . . . ,Rm\} , of M such that | I(B)| is
equal to the number of distinct rows of M \prime and | UB(ri)| = | Ri| holds for each i.

2. Any reduced conflict-free row split M \prime , equipped with a valid partition \{ R1,
R2, . . . , Rm\} , of M can be transformed to a branching B of D\Phi M

such that
| I(B)| is equal to the number of distinct rows of M \prime and | UB(ri)| = | Ri| holds
for each i.

The only difference between IB and UB is the cost function: in IB, the cost of
a branching B is | I(B)| instead of | U(B)| . In the following, we show how to modify
our UB algorithm to obtain an algorithm for IB. Since removing a trivial vertex may
change \zeta (\Phi), Phase 1 is not applied. The following lemma shows that the parent of
each regular vertex can still be predetermined in IB.

Lemma 5.7. There exists an optimal branching B\ast (with respect to IB) of D\Phi

such that B\ast \supseteq BR.

Proof. Let B\ast be an optimal branching not containing BR. By repeatedly per-
forming a regularization operation, B\ast can be transformed into a branching B\prime which
contains all arcs in BR. By Lemma 4.4, this transformation does not induce any new
uncovered pairs. That is, U(B\ast) \supseteq U(B\prime), from which I(B\ast) \supseteq I(B\prime) is concluded.
Since B\ast is optimal, B\prime is also optimal and the lemma holds.

By Lemma 5.7, our Phase 2 algorithm predetermines the parent of each regular
vertex as done in UB. We proceed to present the modification for Phase 3. Let Vi and
an (i, S)-branching be defined the same as in section 4.3. Consider a positive integer

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

7/
23

 to
 1

28
.1

20
.2

34
.1

32
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

PARAMETERIZED COMPLEXITY FOR SR AND DSR 2069

i \leq n and a subset S \subseteq VNR. We redefine the cost of an (i, S)-branching B as the
number of B-irreducible vertices v \in Vi. Define f \prime [i, S] to be the minimum cost of
an (i, S)-branching and if such a branching does not exist, f \prime [i, S] =\infty . Then, our
problem is to compute f \prime [n,VNR]. For i= 1, since Vi contains a single vertex, we have
f \prime [i,\emptyset] = 1 and f \prime [i, S] =\infty for S \not = \emptyset . Consider the case i\geq 2. Recall that Hi

R is the
set of BR-children of vi. For a subset T \subseteq VNR, we define g\prime [i, T] as follows: if Hi

R\cup T
is a proper subset of vi, define g\prime [i, T] = 1, indicating that vi is irreducible if its child
set is Hi

R\cup T in a branching; if Hi
R\cup T = vi, define g

\prime [i, T] = 0, indicating that vi is not
irreducible if its child set is Hi

R \cup T in a branching; and otherwise define g\prime [i, T] =\infty ,
indicating that there is no branching in which the child set of vi is H

i
R \cup T . Then, we

have the following:

(5.1) f \prime [i, S] =min\{ f \prime [i - 1, S - T] + g\prime [i, T] | T \subseteq S\} for i > 1 and S \subseteq VNR.

The proof for (5.1) is analogous to the proof of (4.1) and thus is omitted. The
two recurrences in (4.1) and (5.1) are structurally the same. Consequently, the only
modification for Phase 3 is to replace f and g by, respectively, f \prime and g\prime .

Recall that the precomputation of D\Phi takes O(mn2) time and Phase 2 takes
O(n2) time. The time complexity of Phase 3 with the above modification is analyzed
as follows. Note that since trivial vertices are not removed, all nonregular vertices
in the original D\Phi are contained in VNR, which by Theorem 3.12 is of cardinality
at most min(n,3\delta (\Phi) - 1). It is easy to check that the time complexities of the
two implementations are still, respectively, O(mn2| V\mathrm{N}\mathrm{R}| + n| VNR| 3| V\mathrm{N}\mathrm{R}| +n| VNR|) and
O(mn2| V\mathrm{N}\mathrm{R}| + nN | VNR| 3 lg(| VNR| N) lg lg(| VNR| N)2| V\mathrm{N}\mathrm{R}|). Consider the second imple-
mentation. Since | I(B)| is at most n, to apply Lemma 4.7, we can take N = n+1 to
represent \infty , so that the resulting time complexity is reduced by a factor of m. By
substituting min(n,3\delta (\Phi) - 1) for | VNR| and n+1 for N in the above time complexities,
we obtain the following.

Theorem 5.8. IB can be solved in time O(mn2+mn2min(n,3\delta (\Phi))+n23min(n,3\delta (\Phi)))
or O(mn2 +mn2min(n,3\delta (\Phi)) + n5 lgn lg lgn2min(n,3\delta (\Phi))), where m= | \Sigma | and n= | \Phi | .

Consequently, we obtain the following.

Theorem 5.9. DSR can be solved in time O(mn2 + mn2min(n,3\varepsilon (M)) +
n23min(n,3\varepsilon (M))) or O(mn2 +mn2min(n,3\varepsilon (M)) + n5 lgn lg lgn2min(n,3\varepsilon (M))).

5.3. CDSR. Our algorithms for CSR and DSR can be combined to solve CDSR.
As in section 5.1, we say that a conflict-free row split, equipped with a valid partition
\{ R1,R2, . . . ,Rm\} , is feasible if | Ri| = 1 for each ri /\in Q, and a branching B of D\Phi M

is feasible if | UB(ri)| = 1 for each ri /\in Q. CDSR is to find a feasible conflict-free
row split of M with a minimum number of distinct rows. By Theorem 5.6, CDSR is
equivalent to the following constrained irreducing branching problem (CIB): given a
set family \Phi and a subset Q of its ground set \Sigma , find a feasible branching B of D\Phi

that has the smallest | I(B)| . Let Q\prime =\Sigma - Q. By Lemma 5.3, if any element of Q\prime is
not chain-like, no feasible branching exists and thus there is no solution. Assume that
each element of Q\prime is chain-like. Let B\ast be the branching obtained by running our IB
algorithm. Since B\ast \supseteq BR, from the proof of Lemma 5.3, we know that | UB\ast (e)| = 1
for all e \in Q\prime . Thus, B\ast is feasible. Since B\ast is optimal for IB, it is optimal for
CIB. Therefore, CIB can be solved as efficient as IB. Consequently, we obtained the
following.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

7/
23

 to
 1

28
.1

20
.2

34
.1

32
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

2070 WEN-HORNG SHEU AND BIING-FENG WANG

Theorem 5.10. CDSR can be solved in time O(mn2 + mn2min(n,3\varepsilon (M)) +
n23min(n,3\varepsilon (M))) or O(mn2 +mn2min(n,3\varepsilon (M)) + n5 lgn lg lgn2min(n,3\varepsilon (M))).

6. Conclusion and future work. In this paper, based on the branching for-
mulation in [14], we showed that SR is fixed-parameter tractable when parameterized
by \varepsilon (M). The proposed algorithm for finding an optimal branching of the derived
digraph was built upon several new structural properties: we showed that the removal
of trivial vertices does not change the cost of an optimal branching, proved that the
parents of regular vertices can be greedily predetermined, and derived an upper bound
on the number of nontrivial nonregular vertices. We also extended our SR algorithm
to solve CSR, DSR, and CDSR.

A kernel of an UB instance \Phi is an UB instance \Phi \prime such that \Phi and \Phi \prime are
equivalent and the size of \Phi \prime is bounded by a function of \delta (\Phi). We remark that
our Phases 1 and 2 algorithms do not imply a kernel for UB. Phase 1 removes some
vertices of \Phi , but in the worst case, no vertices are removed. Phase 2 predetermines the
parent of each regular vertex. This predetermination eases the finding of an optimal
branching, but regular vertices are still parts of the input \Phi . Therefore, our Phases 1
and 2 algorithms do not imply a kernel of UB. It is well-known that a problem is FPT
if and only if it admits a kernelization algorithm. An interested reader may refer to
Lemma 2.2 in [5] for the details. We remark that by applying this result, our FPT
algorithm for UB can be used to obtain a kernel of UB. However, the size of the kernel
is O(22\delta (\Phi)), which is exponential in \delta (\Phi).

Possible directions for future research include to (1) give a polynomial kernel for
SR with respect to the parameter \varepsilon (M), (2) improve the O\ast (2min(n,2\varepsilon (M)) time SR
algorithm, (3) identify and study other meaningful parameters, (4) determine if SR
is in APX, and (5) improve the approximation algorithms in [14] for SR and DSR.

Acknowledgment. The authors are grateful to the anonymous referee, who
gave valuable comments that greatly improved the presentation of this paper and
suggested the interpretation of UB as a problem of copying elements in order to make
a set family laminar.

REFERENCES

[1] A. V. Aho, M. R. Garey, and J. D. Ullman, The transitive reduction of a directed graph,
SIAM J. Comput., 1 (1972), pp. 131--137.

[2] A. Bj\"orklund, T. Husfeldt, P. Kaski, and M. Koivisto, Fourier meets M\"obius: Fast subset
convolution, in Proceedings of the 39th Annual ACM Symposium on Theory of Computing,
2007, pp. 67--74.

[3] P. J. Campbell, E. D. Pleasance, P. J. Stephens, E. Dicks, R. Rance, I. Goodhead, G.
A. Follows, A. R. Green, P. A. Futreal, and M. R. Stratton, Subclonal phylogenetic
structures in cancer revealed by ultra-deep sequencing, Proc. Natl. Acad. Sci. USA, 105
(2008), pp. 13081--13086.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
3rd ed., MIT Press, Cambridge, MA, 2009.

[5] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M.
Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, New York, 2015.

[6] R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer, New York, 2012.
[7] M. El-Kebir, L. Oesper, H. Acheson-Field, and B. J. Raphael, Reconstruction of clonal

trees and tumor composition from multi-sample sequencing data, Bioinformatics, 31 (2015),
pp. i62--i70.

[8] D. Fern\'andez-Baca, The perfect phylogeny problem, in Steiner Trees in Industry, D. D. X. Z.
Cheng, ed., Springer, New York, 2001, pp. 203--234.

[9] D. Fern\'andez-Baca and J. Lagergren, A polynomial-time algorithm for near-perfect phy-
logeny, SIAM J. Comput., 32 (2003), pp. 1115--1127.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

7/
23

 to
 1

28
.1

20
.2

34
.1

32
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

PARAMETERIZED COMPLEXITY FOR SR AND DSR 2071

[10] D. Gusfield, Efficient algorithms for inferring evolutionary trees, Networks, 21 (1991),
pp. 19--28.

[11] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-
tional Biology, Cambridge University Press, Cambridge, UK, 1997.

[12] I. Hajirasouliha, A. Mahmoody, and B. J. Raphael, A combinatorial approach for analyzing
intra-tumor heterogeneity from high-throughput sequencing data, Bioinformatics, 30 (2014),
pp. i78--i86.

[13] I. Hajirasouliha and B. J. Raphael, Reconstructing mutational history in multiply sam-
pled tumors using perfect phylogeny mixtures, in Proceedings of the 14th International
Workshop on Algorithms in Bioinformatics, 2014, pp. 354--367.

[14] A. Hujdurovi\'c, E. Husi\'c, M. Milani\v c, R. Rizzi, and A. I. Tomescu, Perfect phylogenies
via branchings in acyclic digraphs and a generalization of dilworth's theorem, ACM Trans.
Algorithms, 14 (2018), 26.

[15] A. Hujdurovi\'c, U. Kacar, M. Milani\v c, B. Ries, and A. I. Tomescu, Complexity and al-
gorithms for finding a perfect phylogeny from mixed tumor samples, IEEE/ACM Trans.
Comput. Biol. Bioinform., 15 (2018), pp. 96--108.

[16] E. Husi\'c, X. Li, A. Hujdurovi\'c, M. Mehine, R. Rizzi, V. M\"akinen, M. Milani\v c, and A. I.
Tomescu, MIPUP: Minimum perfect unmixed phylogenies for multi-sampled tumors via
branchings and ILP , Bioinformatics, 35 (2019), pp. 769--777.

[17] W. M. Ismail, E. Nzabarushimana, and H. Tang, Algorithmic approaches to clonal recon-
struction in heterogeneous cell populations, Quant. Biol., 7 (2019), pp. 255--265.

[18] W. Jiao, S. Vembu, A. G. Deshwar, L. Stein, and Q. Morris, Inferring clonal evolution of
tumors from single nucleotide somatic mutations, BMC Bioinform., 15 (2014), 35.

[19] S. Kannan and T. Warnow, A fast algorithm for the computation and enumeration of perfect
phylogenies, SIAM J. Comput., 26 (1997), pp. 1749--1763.

[20] S. Malikic, A. W. McPherson, N. Donmez, and C. S. Sahinalp, Clonality inference in
multiple tumor samples using phylogeny, Bioinformatics, 31 (2015), pp. 1349--1356.

[21] D. E. Newburger, D. Kashef-Haghighi, Z. Weng, R. Salari, R. T. Sweeney, A. L. Brun-
ner, S. X. Zhu, X. Guo, S. Varma, M. L. Troxell, R. B. West, S. Batzoglou, and A.
Sidow, Genome evolution during progression to breast cancer , Genome Res., 23 (2013),
pp. 1097--1108.

[22] S. Nik-Zainal, P. V. Loo, D. C. Wedge, L. B. Alexandrov, C. D. Greenman, K. W.
Lau, K. Raine, D. Jones, J. Marshall, M. Ramakrishna, A. Shlien, S. L. Cooke, J.
Hinton, A. Menzies, L. A. Stebbings, C. Leroy, M. Jia, R. Rance, L. J. Mudie, S. J.
Gamble, P. J. Stephens, S. McLaren, P. S. Tarpey, E. Papaemmanuil, H. R. Davies,
I. Varela, D. J. McBride, G. R. Bignell, K. Leung, A. P. Butler, J. W. Teague, S.
Martin, G. J\"onsson, O. Mariani, S. Boyault, P. Miron, A. Fatima, A. Langerod, S.
A. J. R. Aparicio, A. Tutt, A. M. Sieuwerts, \r A. Borg, G. Thomas, A. V. Salomon,
A. L. Richardson, A. L. Borresen-Dale, P. A. Futreal, M. R. Stratton, and P. J.
Campbell, The life history of 21 breast cancers, Cell, 149 (2012), pp. 994--1007.

[23] I. Pe'er, R. Shamir, and R. Sharan, Incomplete directed perfect phylogeny, SIAM J. Comput.,
33 (2004), pp. 590--607.

[24] V. Popic, R. Salari, I. Hajirasouliha, D. Kashef-Haghighi, R. B. West, and S. Bat-
zoglou, Fast and scalable inference of multi-sample cancer lineages, Genome Biol., 16
(2015), 91.

[25] F. Strino, F. Parisi, M. Micsinai, and Y. Kluger, TrAp: A tree approach for fingerprinting
subclonal tumor composition, Nucleic Acids Res., 41 (2013), e165.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

7/
23

 to
 1

28
.1

20
.2

34
.1

32
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

	Introduction
	Review of the branching formulation
	Connection between conflict-free row splits and perfect phylogenies
	The branching formulation

	An upper bound on <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	t()?></0:tex-math></0:inline-formula>
	An algorithm for the branching formulation
	Phase 1
	Phase 2
	Phase 3

	Algorithms for CSR, DSR, and CDSR
	CSR
	DSR
	CDSR

	Conclusion and future work
	Acknowledgment
	References

