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Maximum matching problem

Let G = (V, E) be an unweighted graph

Lletn=|V|, m=|E|
* Matching: set of edges that do not share endpoints
* Maximum matching: the matching of maximum size

e c-approximate matching:
matching of size at least 1/c times the maximum



Prior work

* The problem has been extensively studied:

* Polynomial time: [Berge ‘57] [Edmonds ‘65] [Hopcroft, Karp 73] [Micali, Vazirani ‘80]
[Gabow ‘90] [Kalantari, Shokoufandeh ‘95] ...

* Dynamic: [Bernstein, Stein ‘16] [Solomon ‘16] [Bhattacharya, Kulkarni ‘19]
[Behnezhad, tacki, Mirrokni ‘19] [Behnezhad, Khanna 22] ...

* Semi-streaming: [McGregor ‘05] [Ahn, Guha, '11] [Ahn, Guha, '13] [Kapralov, '13]
[Tirodkar, '18] [Assadi, Liu, Tarjan, '21] [Assadi, Jambulapati, Jin, Sidford, Tian, '22]
[Fischer, Mitrovic, Uitto, '22] [Huang, Su, '23] [Assadi, '24] ...

e Distributed (CONGEST, MPC): |[Behnezhad, Hajiaghayi, Harris '19] [Ghaffari, Grunau,
Jin '20] [Fischer, Mitrovi¢, Uitto, '22]...
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(1+€)-approximate matching

* Our focus: Given € > 0, find (1+¢€)-approximation
* Motivation: finding exact maximum is inefficient in many settings
* Approaches:

(1) stand-alone algorithm

(2) boosting framework (reducing to constant approximation)



Boosting framework

* Input:
» graph G
» parameter €

» access to oracle A_ . for constant-approximate matching

mat

 What it does:
»> Calls A,_ . on adaptively chosen graphs
» (May not be subgraphs of G)
» Find (1+¢€)-approximate matching for G



First framework

By [McGregor '05]
* Was a semi-streaming algorithm
e Later adapted as a framework:

* MPC [Onak, 2018]
* Fully dynamic [Bhattacharya et al., 2023]

Number of callsto A, ,: (1/€)°/¢), independent of n!

Message: (1+&)-approx. reduces to constant approx. in many settings!



Semi-streaming setting

e No random access to G

* Edges are presented as a stream
* Algorithm can use O(n) memory (sublinear)

e Goal: minimize number of passes

Machine

-

)

O(n poly log n) memory

AVANE

data stream (edges)




MPC setting (informal)

Input stored in M machines

Each machine has O(n®*) memory, a < 1

* Machines communicate in synchronous rounds

 Goal: minimize number of rounds

-




Fully dynamic setting

Input: Empty graph of n vertices
Sequence of edge updates (add or remove edges)

Goal: Maintain a (1+€)-approximate matching

* Goal: minimize update time

[McGO5]'s framework works for all these settings!
but with exp(1/¢) calls



Recent improvement

1. By [Fischer, Mitrovi¢, Uitto, 2022]
* Improved semi-streaming algorithm
* Framework with poly(1/¢) calls
o 1/e'° for semi-streaming
e 1/e°2 for MPC, and CONGEST

2. By [Mitrovi¢, Mukherjee, Sankowski, Sheu, 2025]
* Simplify semi-streaming algorithm
 All complexities improved by (1/¢)*3

* Not clear if they work for dynamic
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New result 1

A new framework for
CONGEST and MPC

* Adapted from [MMSS25]'s
semi-streaming algorithm

* £/ log(1/€) calls

[McGO05] (1/€)0(1/e)
[FMU22] g2
[MMSS25] g-39

[this] £’ log(1/¢)

11



New result 2

* First framework (for dynamic) with poly(1/g) calls in general graphs

[AKK24] dynamic exp(1/¢) n°t) ORS(n, 6_(n))
[Liu24] dynamic, bipartite poly(1/) w
ZQ(N/log n)
[Liu24] offline dynamic, bipartite poly(1/g) e
[this] dynamic poly(1/e) n°t) ORS(n, 6.(n))
[this] dynamic poly(1/g) w
ZQ(N/log n)

[this] offline dynamic poly(1/¢) 1058



Remark (technical details)

1. All frameworks require additional technical assumptions

* Need simple procedures for preparing the inputsto A, .

2. For bipartite graphs, better frameworks exist
(See [Assadi, Khanna, Kiss, 2024] for a list)

3. Fun fact: All frameworks above work by simulating semi-streaming algorithms
(except [Liu24]'s algorithm)

13



Route map (technical part)

1. Review of [MMSS25]'s algorithm

2. Simulation in distributed settings
(no model-specific details)

3. Challenges in dynamic settings

(using a weaker A, .)




Semi-streaming setting (review)

No random access to G
Edges presented as stream

O(n) memory

Can make multiple passes

Goal: minimize the number of passes

-

-

Machine

~

)

O(n poly log n) memory

ISVANE

data stream (edges)
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Definition
* Free node: unmatched vertex
* Alternating path: path alternates between matched and unmatched edges

* Augmenting path: alternating path from a free node to another
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Starting point - short augmenting paths

Lemma

Let M be a matching and Y be an inclusion-maximal set of
2/€-long vertex-disjoint augmenting paths. If |Y| < g?2|M|/6,
then M is a (1+€)-approximate maximum matching.

[Kalantari, Shokoufandeh ‘95] [McGregor ‘05] [Eggert, Kliemann, Munstermann, Srivastav ‘12]
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ldea of [MMSS25]

e Start from a maximal matching M

* Growing disjoint alternating trees of depth O(1/¢)

______
-

* Extend these trees to find augmentations PRI

__________________________________________________



Alternating trees

e Each free node maintains an alternating tree
* Root is the free node
* Root-to-leaf paths are even-length alternating paths

______
-

______
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Active paths

* Each tree has an active path
e Starts from root
* Even length

~~~~~~~

__________________________________
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Edge label

 Each matched edge e maintains a label L(e)

* Represents the depth of e in the tree (informal)
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Initialization

e Each free node itself is a tree
e Active path is empty

* Label of each edge is o
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Outer / inner vertices

* Even layers: outer vertices
* Odd layers: inner vertices

* Root: outer vertex

u outer 0
__m__7£%\ _____________________________ .

' ) inner 1

2
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Growing trees

* Read edges (w, v) from stream
* Focus on edges from an active path
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Growing trees

* Read edges (w, v) from stream
* Focus on edges from an active path

Case 1: vis not in any tree — Extend
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Growing trees

* Read edges (w, v) from stream
* Focus on edges from an active path

Case 1: vis not in any tree — Extend

Case 2: vis an inner vertex — Overtake
(if label can be reduced)
(also take the subtree of v)
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Growing trees

* Read edges (w, v) from stream
* Focus on edges from an active path

Case 1: vis not in any tree — Extend

Case 2: vis an inner vertex — Overtake
(if label can be reduced)
(also take the subtree of v)
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Growing trees

* Read edges (w, v) from stream
* Focus on edges from an active path

Case 1: vis not in any tree — Extend
Case 2: vis an inner vertex —» Overtake
Case 3: vis an outer vertex of another tree

— Augment
(remove both trees)
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Growing trees

* Read edges (w, v) from stream
* Focus on edges from an active path

Case 1: vis notin any tree — Extend Qu

Case 2: vis an inner vertex — Overtake o

Case 3: vis an outer vertex of another tree | !

— Augment |

Case 4: vis an outer vertex of the same tree , I >w

— Contract (skipped) R i

Il



Summary

In each pass, scan edges and perform Extend / Overtake / Augment / Contract
Run and repeated for poly(1/<) passes
Finds (1+€)-approx. matching
Properties:
* Tree size is always 1/g°

* Each tree can only do one operation in a pass

[FMU22, MMSS25]'s framework: simulate each pass using 1/ calls of A, .
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Route map (part 2)

1. Review of [MMSS25]'s algorithm
2. Simulation in distributed settings

3. Challenges in dynamic settings




Overview - framework

Goal: Find (1+€)-approx. matching using A_ . (constant approx.)

mat

Approach: Simulate each pass with € log(1/€) callsto A, .
Idea: repeat two steps:

1.Use A___to find a matching

mat

2. Perform basic operations on matched edges

Focus on Augment and Overtake
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Review - Augment

* Applied on:
An edge between outer vertices of different trees

 Result:
The two trees are removed
Augmentation recorded
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Example

<
(99]




............

Observation

* Removed trees form a
matching!




Simulation - Augment

Construct graph H
Each tree is shrunk into a node

Build edges between trees if
Augment is possible

Invoking A . on H to find matching M|,




Simulation - Augment

Construct graph H
Each tree is shrunk into a node

(Removed)

Build edges between trees if
Augment is possible

Invoking A . on H to find matching M|,

Perform Augment on returned matching

Repeat the above for O(log(1/€)) calls I ________ i



Analysis - Augment

* Let:
 OPT(H) = current maximum matching size of H
* r=approx. factorof A__.

* Ineachcall, A__. finds an r-approximate matching

mat
* All matched vertices are removed from H

—> OPT(H) reduced by a (1 — 1/r) factor

— After k calls, OPT(H) reduced by (1 — 1/r)¢ =~ ek/" times

— With 10 r log(1/€) calls, OPT(H) reduced by £1° times
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Analysis - Augment

But, OPT(H) is not reduced to zero! (Some augments missed)
We could miss £'°| M| augmentations

Claim: it's ok to miss them

Recall our starting point:

Lemma:
If M has at most‘e2 | M|/6‘short augmentations, then it is a (1+€)-approx.

\

It's ok to miss O(e?| M|) augmentations
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Simulation - Overtake

* Applied on:
Edges (u, v)
u is head of active path
V is inner vertex
label can be reduced
the tree of u has not extended

 Result:
u takes the subtree of v




Simulation - Overtake

Same idea?

e Build graph H

* Contracted each tree

* Each edge represents a possible Overtake
Problem: analysis does not apply

For Augment: Matched trees are removed

For Overtake: Further overtake could happen




ldea

* Splitinto O(1/¢) stages

* |n stage s,
only edges with label s can overtake

* Goal: In one stage, each tree can only
overtake / taken once

— After calling A A

mat?

can remove all matched trees i I i
— Previous analysis applies to one stage




Route map (part 3)

1. Review of [MMSS25]'s algorithm
2. Simulation in distributed settings

3. Challenges in dynamic settings




Dynamic setting (review)

* Input: Empty graph of n vertices
Sequence of edge updates (add or remove edges)

* Goal: Maintain a (1+€)-approx.
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Known reduction to static problem

~ o
-~
-~ o
-

We have a weaker A, ., called A ., o N/

mat’ o -
Informal definition: /

* Input: graph G, vertex subset S
e Output: Finds r-approximate matching of G[S]

* Constraint: Inputto A ., must be prepared in O_(n) time

wea

Goal: Call A ., poly(1/€) times and finds a (1+€)-approximate matching

Challenge: A, only works on induced subgraphs!

wea
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ldea - vertex sampling

Recall, Augment operation:

Find edges between outer vertices of different trees
Sample one outer vertex from each tree
Suppose semi-streaming algorithm does Augment on (u, v)
Our simulation works when u and v are both sampled
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Analysis

 Size of each tree is poly(1/¢)

— an edge preserved with probability poly(g)

— Use previous framework, with poly(1/g) times more calls
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Remark

* There are some additional challenges for overtake and contract

e But the overall idea is the same



Q&A Contact

Wen-Horng Sheu
wsheu@ucdavis.edu
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