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Maximum matching problem

• Let G = (V, E) be an unweighted graph

• Let n = |V|, m = |E|

• Matching: set of edges that do not share endpoints

• Maximum matching: the matching of maximum size

• c-approximate matching:
  matching of size at least 1/c times the maximum
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Prior work

• The problem has been extensively studied:

• Polynomial time: [Berge ‘57] [Edmonds ‘65] [Hopcroft, Karp ‘73] [Micali, Vazirani ‘80] 
[Gabow ‘90] [Kalantari, Shokoufandeh ‘95] …

• Dynamic: [Bernstein, Stein ‘16] [Solomon ‘16] [Bhattacharya, Kulkarni ‘19] 
[Behnezhad, Łącki, Mirrokni ‘19] [Behnezhad, Khanna ‘22] …

• Semi-streaming: [McGregor ‘05] [Ahn, Guha, '11] [Ahn, Guha, '13] [Kapralov, '13] 
[Tirodkar, '18] [Assadi, Liu, Tarjan, '21] [Assadi, Jambulapati, Jin, Sidford, Tian, '22] 
[Fischer, Mitrović, Uitto, '22] [Huang, Su, '23] [Assadi, '24] ...

• Distributed (CONGEST, MPC): [Behnezhad, Hajiaghayi, Harris '19] [Ghaffari, Grunau, 
Jin '20] [Fischer, Mitrović, Uitto, '22]... 3



(1+ε)-approximate matching

• Our focus: Given ε > 0, find (1+ε)-approximation

• Motivation: finding exact maximum is inefficient in many settings

• Approaches:

(1) stand-alone algorithm

(2) boosting framework (reducing to constant approximation)
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Boosting framework

• Input:
➢ graph G
➢ parameter ε
➢ access to oracle Amat for constant-approximate matching

• What it does:
➢ Calls Amat on adaptively chosen graphs
➢ (May not be subgraphs of G)
➢ Find (1+ε)-approximate matching for G
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First  framework

• By [McGregor '05]

• Was a semi-streaming algorithm

• Later adapted as a framework:
• MPC [Onak, 2018]

• Fully dynamic [Bhattacharya et al., 2023]

• Number of calls to Amat : (1/ε)O(1/ε), independent of n!

• Message: (1+ε)-approx. reduces to constant approx. in many settings!
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Semi-streaming sett ing

• No random access to G
• Edges are presented as a stream
• Algorithm can use Õ (n) memory (sublinear)

• Goal: minimize number of passes
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Machine

O(n poly log n) memory data stream (edges)

....



MPC sett ing ( informal)
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• Input stored in M machines

• Each machine has O(nα) memory, α < 1

• Machines communicate in synchronous rounds

• Goal: minimize number of rounds

Machines



Ful ly  dynamic sett ing
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• Input: Empty graph of n vertices
     Sequence of edge updates (add or remove edges)

• Goal: Maintain a (1+ε)-approximate matching

• Goal: minimize update time

• [McG05]'s framework works for all these settings!
• but with exp(1/ε) calls



Recent improvement

1. By [Fischer, Mitrović, Uitto, 2022]
• Improved semi-streaming algorithm
• Framework with poly(1/ε) calls
• 1/ε19 for semi-streaming
• 1/ε52 for MPC, and CONGEST

2. By [Mitrović, Mukherjee, Sankowski, Sheu, 2025]
• Simplify semi-streaming algorithm
• All complexities improved by (1/ε)13

• Not clear if they work for dynamic
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New result  1

• A new framework for
CONGEST and MPC

• Adapted from [MMSS25]'s 
semi-streaming algorithm

• ε-7 log(1/ε) calls
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Reference # calls to Amat

[McG05] (1/ε)O(1/ε)

[FMU22] ε-52

[MMSS25] ε-39

[this] ε-7 log(1/ε)



New result  2

• First framework (for dynamic) with poly(1/ε) calls in general graphs
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Reference Setting Complexity in ε Complexity in n

[AKK24] dynamic exp(1/ε) no(1) ORS(n, θε(n))

[Liu24] dynamic, bipartite poly(1/ε) 𝑛

2Ω( log 𝑛)

[Liu24] offline dynamic, bipartite poly(1/ε) n0.58

[this] dynamic poly(1/ε) no(1) ORS(n, θε(n))

[this] dynamic poly(1/ε) 𝑛

2Ω( log 𝑛)

[this] offline dynamic poly(1/ε) n0.58



Remark (technical  detai ls)

1. All frameworks require additional technical assumptions

• Need simple procedures for preparing the inputs to Amat

2. For bipartite graphs, better frameworks exist
    (See [Assadi, Khanna, Kiss, 2024] for a list)

3. Fun fact: All frameworks above work by simulating semi-streaming algorithms
        (except [Liu24]'s algorithm)
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Route map (technical  part)

1. Review of [MMSS25]'s algorithm

2. Simulation in distributed settings
  (no model-specific details)

3. Challenges in dynamic settings
   (using a weaker Amat)
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Semi-streaming sett ing (review)

• No random access to G
• Edges presented as stream
• Õ (n) memory
• Can make multiple passes

• Goal: minimize the number of passes
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Machine

O(n poly log n) memory data stream (edges)

....



Def in i t ion
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• Free node: unmatched vertex

• Alternating path: path alternates between matched and unmatched edges

• Augmenting path: alternating path from a free node to another

u v



Start ing  po int  -  short  augment ing  paths

[Kalantari, Shokoufandeh ‘95] [McGregor ‘05] [Eggert, Kliemann, Munstermann, Srivastav ‘12]

Let M be a matching and Y be an inclusion-maximal set of
2/ε - long vertex-disjoint augmenting paths. If |Y| < ε2|M|/6, 
then M is a (1+ε)-approximate maximum matching.

Lemma
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Idea of  [MMSS25]

• Start from a maximal matching M

• Growing disjoint alternating trees of depth O(1/ε)

• Extend these trees to find augmentations
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u
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Alternating trees

• Each free node maintains an alternating tree
• Root is the free node
• Root-to-leaf paths are even-length alternating paths
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u v



Active paths

• Each tree has an active path
• Starts from root
• Even length
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u

active path



Edge label

• Each matched edge e maintains a label L(e)

• Represents the depth of e in the tree (informal)
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u

1

2 2



v

Init ia l izat ion

∞

∞ ∞
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u w

∞

∞

x

• Each free node itself is a tree

• Active path is empty

• Label of each edge is ∞



Outer /  inner vert ices

• Even layers: outer vertices

• Odd layers: inner vertices

• Root: outer vertex

23

0

1

2

3

4

outer

inner

u



• Read edges (w, v) from stream
• Focus on edges from an active path

u

w v
2

active path

Growing  t rees
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• Read edges (w, v) from stream
• Focus on edges from an active path

Case 1: v is not in any tree → Extend

u

v

∞

2
w

Growing  t rees
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u

v

4

2

Case 1: v is not in any tree → Extend

Case 2: v is an inner vertex → Overtake
(if label can be reduced)
(also take the subtree of v) w

• Read edges (w, v) from stream
• Focus on edges from an active path
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x

Growing  t rees



u

v

3

2

Case 1: v is not in any tree → Extend

Case 2: v is an inner vertex → Overtake
(if label can be reduced)
(also take the subtree of v) w

• Read edges (w, v) from stream
• Focus on edges from an active path
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x

Growing  t rees



Case 1: v is not in any tree → Extend

Case 2: v is an inner vertex → Overtake

Case 3: v is an outer vertex of another tree
→ Augment
(remove both trees)

u

v

w

• Read edges (w, v) from stream
• Focus on edges from an active path
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Growing  t rees



u

w

• Read edges (w, v) from stream
• Focus on edges from an active path

Case 1: v is not in any tree → Extend

Case 2: v is an inner vertex → Overtake

Case 3: v is an outer vertex of another tree
→ Augment

Case 4: v is an outer vertex of the same tree
→ Contract (skipped) v
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Growing  t rees
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• In each pass, scan edges and perform Extend / Overtake / Augment / Contract

• Run and repeated for poly(1/ε) passes

• Finds (1+ε)-approx. matching

• Properties:
• Tree size is always 1/ε6

• Each tree can only do one operation in a pass

• [FMU22, MMSS25]'s framework: simulate each pass using 1/ε33 calls of Amat

Summary



Route map (part  2)

1. Review of [MMSS25]'s algorithm

2. Simulation in distributed settings

3. Challenges in dynamic settings
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Overv iew -  f ramework

• Goal: Find (1+ε)-approx. matching using Amat (constant approx.) 

• Approach: Simulate each pass with ε-1 log(1/ε) calls to Amat

• Idea: repeat two steps:

1. Use Amat to find a matching

2. Perform basic operations on matched edges

• Focus on Augment and Overtake
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Review -  Augment

• Applied on:
 An edge between outer vertices of different trees

• Result: 
 The two trees are removed
 Augmentation recorded

u
v
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Example
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Observat ion

• Removed trees form a 
matching!
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S imulat ion -  Augment

• Construct graph H

• Each tree is shrunk into a node

• Build edges between trees if
   Augment is possible

• Invoking Amat on H to find matching MH

MH
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S imulat ion -  Augment

• Construct graph H

• Each tree is shrunk into a node

• Build edges between trees if
   Augment is possible

• Invoking Amat on H to find matching MH

• Perform Augment on returned matching

• Repeat the above for O(log(1/ε)) calls

(Removed)
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Analys is -  Augment

• Let:
• OPT(H) = current maximum matching size of H
• r = approx. factor of Amat

• In each call, Amat finds an r-approximate matching

• All matched vertices are removed from H

→ OPT(H) reduced by a (1 − 1/r) factor

→ After k calls, OPT(H) reduced by (1 − 1/r)k  ek/r times

→ With 10 r log(1/ε) calls, OPT(H) reduced by ε-10 times
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Analys is -  Augment

• But, OPT(H) is not reduced to zero! (Some augments missed)

• We could miss ε10|M| augmentations

• Claim: it's ok to miss them

• Recall our starting point: 

Lemma:
If M has at most ε2|M|/6 short augmentations, then it is a (1+ε)-approx.

It's ok to miss O(ε2|M|) augmentations
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S imulat ion -  Overtake

• Applied on:
 Edges (u, v)
 u is head of active path

 v is inner vertex
 label can be reduced
 the tree of u has not extended

• Result:
 u takes the subtree of v

u

1

v

3
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S imulat ion -  Overtake

• Same idea? 
• Build graph H
• Contracted each tree
• Each edge represents a possible Overtake

• Problem: analysis does not apply

• For Augment: Matched trees are removed

• For Overtake: Further overtake could happen
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Idea

• Split into O(1/ε) stages

• In stage s,
 only edges with label s can overtake

• Goal: In one stage, each tree can only
   overtake / taken once

→ After calling Amat,
 can remove all matched trees

→ Previous analysis applies to one stage

u

1

v

3



Route map (part  3)

1. Review of [MMSS25]'s algorithm

2. Simulation in distributed settings

3. Challenges in dynamic settings
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Dynamic sett ing (review)
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• Input: Empty graph of n vertices
     Sequence of edge updates (add or remove edges)

• Goal: Maintain a (1+ε)-approx.
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Known reduct ion to  stat ic  problem

• We have a weaker Amat, called Aweak

• Informal definition:

• Input: graph G, vertex subset S

• Output: Finds r-approximate matching of G[S]

• Constraint: Input to Aweak must be prepared in Oε(n) time

• Goal: Call Aweak poly(1/ε) times and finds a (1+ε)-approximate matching

• Challenge: Aweak only works on induced subgraphs!
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Idea  -  vertex  sampl ing

• Recall, Augment operation:
 Find edges between outer vertices of different trees

• Sample one outer vertex from each tree
• Suppose semi-streaming algorithm does Augment on (u, v)
• Our simulation works when u and v are both sampled

a
b

c
d

good
bad
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Analys is

• Size of each tree is poly(1/ε)

→ an edge preserved with probability poly(ε)

→ Use previous framework, with poly(1/ε) times more calls

a
b

c
d

good
bad
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Remark

• There are some additional challenges for overtake and contract

• But the overall idea is the same



Q&A
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Contact
Wen-Horng Sheu

wsheu@ucdavis.edu
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