

A framework for boosting matching approximation: parallel, distributed, and dynamic

Slobodan Mitrović
(UC Davis)

Wen-Horng Sheu
(UC Davis)

UCDAVIS

Maximum matching problem

- Let $G = (V, E)$ be an **unweighted** graph
- Let $n = |V|, m = |E|$
- **Matching**: set of edges that do not share endpoints
- **Maximum matching**: the matching of maximum size
- **c -approximate matching**:
matching of size at least $1/c$ times the maximum

Prior work

- The problem has been extensively studied:
- **Polynomial time:** [Berge '57] [Edmonds '65] [Hopcroft, Karp '73] [Micali, Vazirani '80] [Gabow '90] [Kalantari, Shokoufandeh '95] ...
- **Dynamic:** [Bernstein, Stein '16] [Solomon '16] [Bhattacharya, Kulkarni '19] [Behnezhad, Łącki, Mirrokni '19] [Behnezhad, Khanna '22] ...
- **Semi-streaming:** [McGregor '05] [Ahn, Guha, '11] [Ahn, Guha, '13] [Kapralov, '13] [Tirodkar, '18] [Assadi, Liu, Tarjan, '21] [Assadi, Jambulapati, Jin, Sidford, Tian, '22] [Fischer, Mitrović, Uitto, '22] [Huang, Su, '23] [Assadi, '24] ...
- **Distributed (CONGEST, MPC):** [Behnezhad, Hajiaghayi, Harris '19] [Ghaffari, Grunau, Jin '20] [Fischer, Mitrović, Uitto, '22]...

$(1+\varepsilon)$ -approximate matching

- **Our focus:** Given $\varepsilon > 0$, find $(1+\varepsilon)$ -approximation
- **Motivation:** finding exact maximum is inefficient in many settings
- **Approaches:**
 - (1) stand-alone algorithm
 - (2) boosting framework (reducing to constant approximation)

Boosting framework

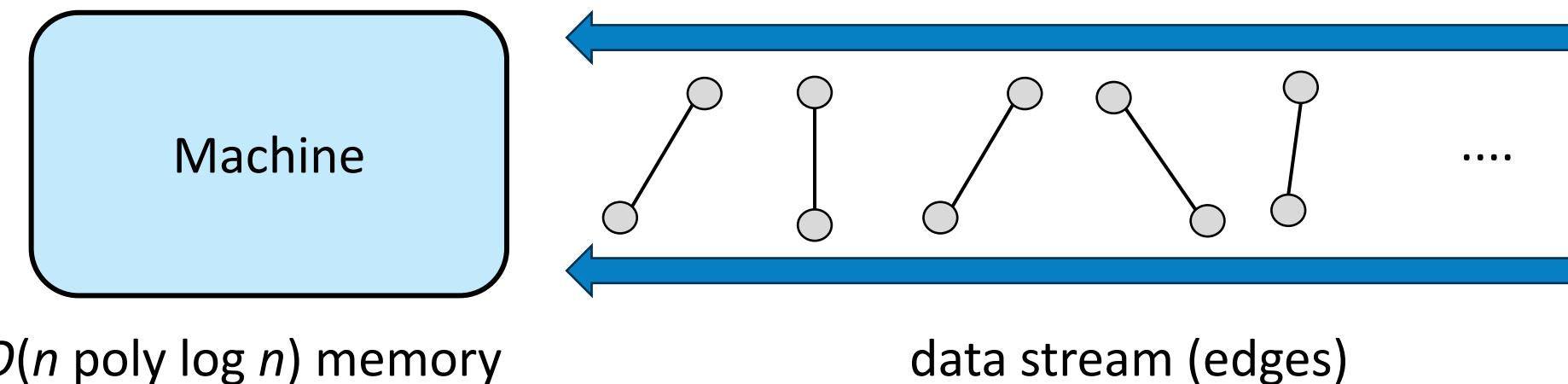
- **Input:**
 - graph G
 - parameter ϵ
 - access to oracle A_{mat} for **constant-approximate** matching
- **What it does:**
 - Calls A_{mat} on **adaptively** chosen graphs
 - (May **not** be subgraphs of G)
 - Find **$(1+\epsilon)$ -approximate matching** for G

First framework

- By [McGregor '05]
- Was a **semi-streaming** algorithm
- Later adapted as a framework:
 - MPC [Onak, 2018]
 - Fully dynamic [Bhattacharya et al., 2023]
- **Number of calls to A_{mat} :** $(1/\varepsilon)^{O(1/\varepsilon)}$, **independent of n !**
- **Message:** $(1+\varepsilon)$ -approx. reduces to constant approx. in many settings!

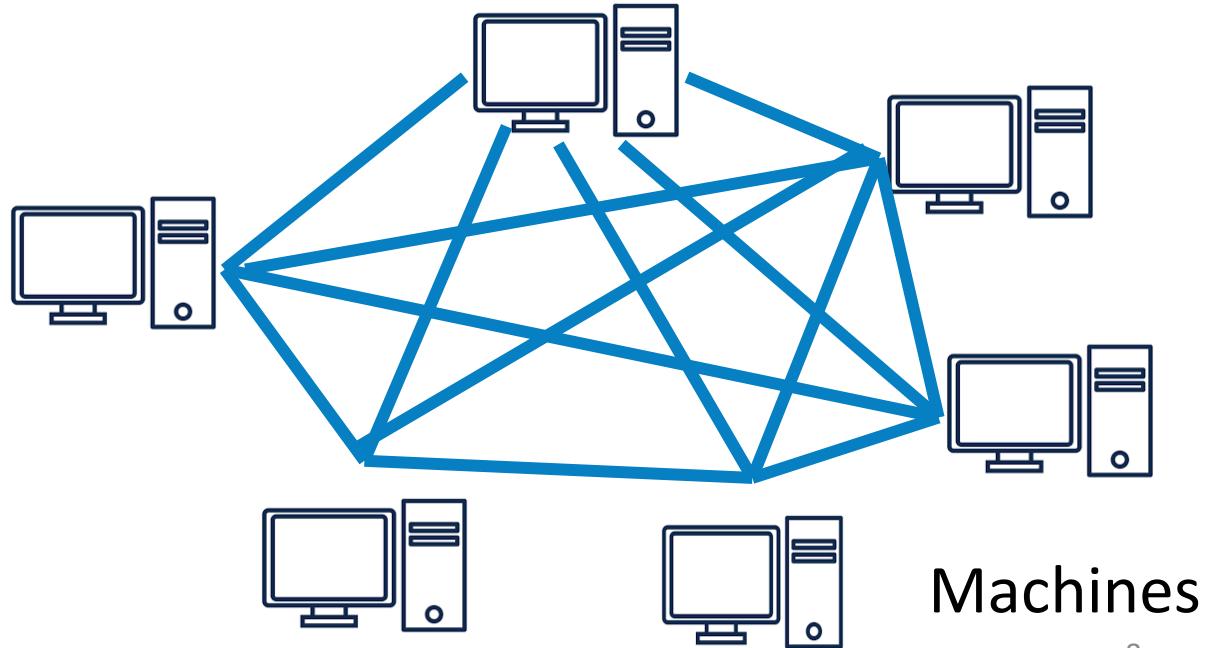
Semi-streaming setting

- No random access to G
- Edges are presented as a **stream**
- Algorithm can use $\tilde{O}(n)$ memory (sublinear)
- **Goal:** minimize number of passes



MPC setting (informal)

- Input stored in M machines
- Each machine has $O(n^\alpha)$ memory, $\alpha < 1$
- Machines communicate in synchronous rounds
- **Goal:** minimize number of rounds



Fully dynamic setting

- **Input:** Empty graph of n vertices
Sequence of edge updates (add or remove edges)
- **Goal:** Maintain a $(1+\varepsilon)$ -approximate matching
- **Goal:** minimize update time
- [McG05]'s framework works for all these settings!
- but with $\exp(1/\varepsilon)$ calls

Recent improvement

1. By [Fischer, Mitrović, Uitto, 2022]

- Improved **semi-streaming** algorithm
- Framework with $\text{poly}(1/\varepsilon)$ calls
- $1/\varepsilon^{19}$ for **semi-streaming**
- $1/\varepsilon^{52}$ for **MPC**, and **CONGEST**

2. By [Mitrović, Mukherjee, Sankowski, Sheu, 2025]

- Simplify **semi-streaming** algorithm
- All complexities improved by $(1/\varepsilon)^{13}$
- Not clear if they work for **dynamic**

New result 1

- A new framework for **CONGEST** and **MPC**
- Adapted from [MMSS25]'s **semi-streaming algorithm**
- $\varepsilon^{-7} \log(1/\varepsilon)$ calls

Reference	# calls to A_{mat}
[McG05]	$(1/\varepsilon)^{O(1/\varepsilon)}$
[FMU22]	ε^{-52}
[MMSS25]	ε^{-39}
[this]	$\varepsilon^{-7} \log(1/\varepsilon)$

New result 2

- First framework (for dynamic) with $\text{poly}(1/\varepsilon)$ calls in general graphs

Reference	Setting	Complexity in ε	Complexity in n
[AKK24]	dynamic	$\exp(1/\varepsilon)$	$n^{o(1)} \text{ORS}(n, \Theta_\varepsilon(n))$
[Liu24]	dynamic, bipartite	$\text{poly}(1/\varepsilon)$	$\frac{n}{2^{\Omega(\sqrt{\log n})}}$
[Liu24]	offline dynamic, bipartite	$\text{poly}(1/\varepsilon)$	$n^{0.58}$
[this]	dynamic	$\text{poly}(1/\varepsilon)$	$n^{o(1)} \text{ORS}(n, \Theta_\varepsilon(n))$
[this]	dynamic	$\text{poly}(1/\varepsilon)$	$\frac{n}{2^{\Omega(\sqrt{\log n})}}$
[this]	offline dynamic	$\text{poly}(1/\varepsilon)$	$n^{0.58}$

Remark (technical details)

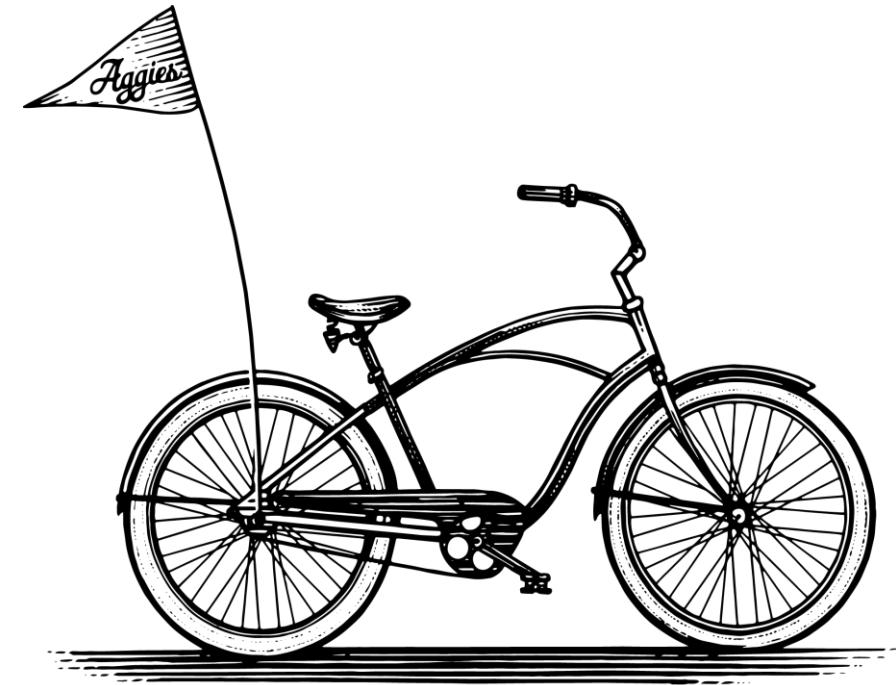
1. All frameworks require additional **technical assumptions**
 - Need **simple procedures** for **preparing the inputs to A_{mat}**
2. For **bipartite graphs**, better frameworks exist
(See [Assadi, Khanna, Kiss, 2024] for a list)
3. **Fun fact:** All frameworks above work by **simulating semi-streaming algorithms**
(except [Liu24]'s algorithm)

Route map (technical part)

1. Review of [MMSS25]'s algorithm

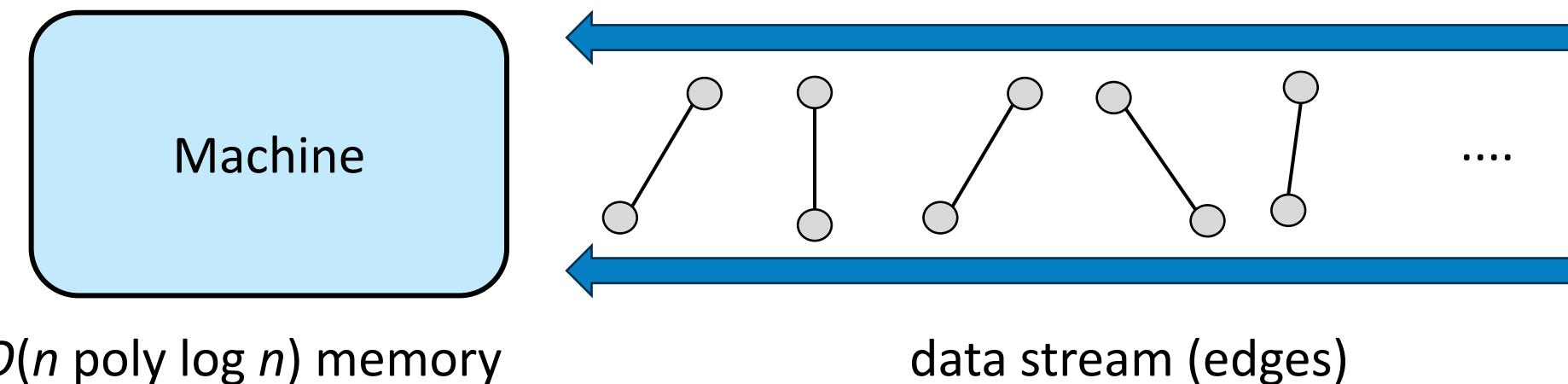
2. Simulation in distributed settings
(no model-specific details)

3. Challenges in dynamic settings
(using a weaker A_{mat})



Semi-streaming setting (review)

- No random access to G
- Edges presented as **stream**
- $\tilde{O}(n)$ memory
- Can make **multiple passes**
- **Goal: minimize** the number of passes



Definition

- *Free node*: unmatched vertex
- *Alternating path*: path alternates between matched and unmatched edges
- *Augmenting path*: alternating path from a free node to another

Starting point - short augmenting paths

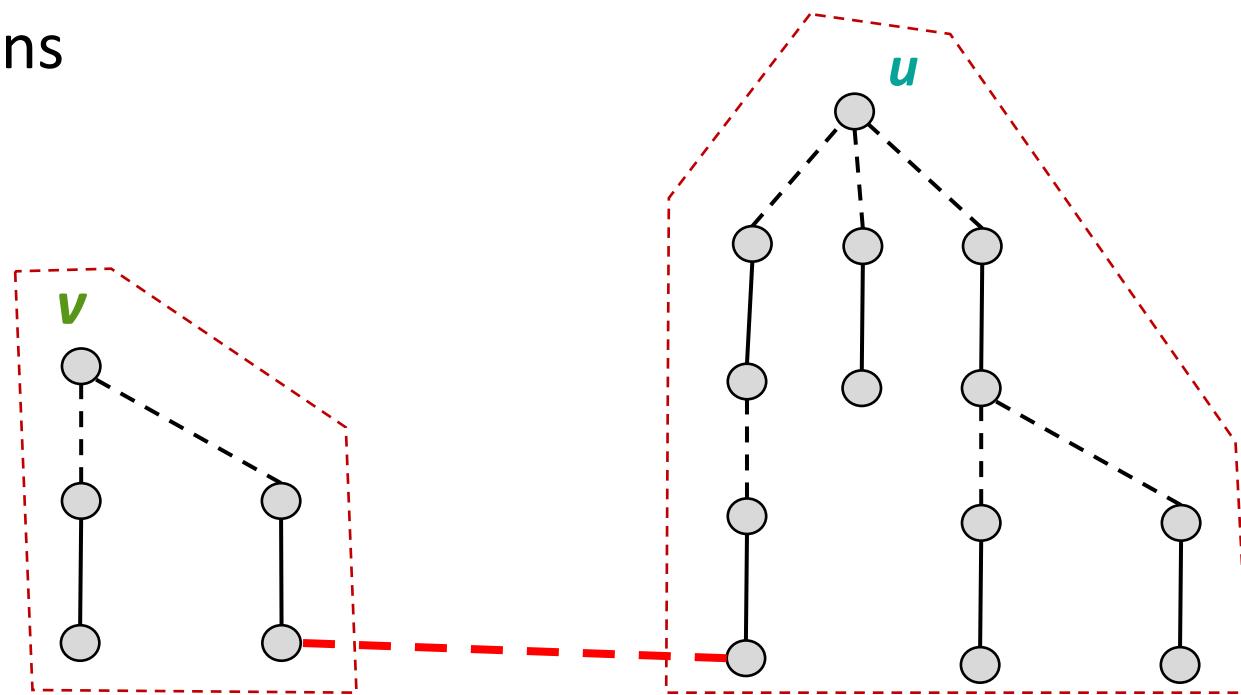
Lemma

Let M be a matching and Y be an inclusion-maximal set of $2/\varepsilon$ -long vertex-disjoint augmenting paths. If $|Y| < \varepsilon^2 |M|/6$, then M is a $(1+\varepsilon)$ -approximate maximum matching.

[Kalantari, Shokoufandeh '95] [McGregor '05] [Eggert, Kliemann, Munstermann, Srivastav '12]

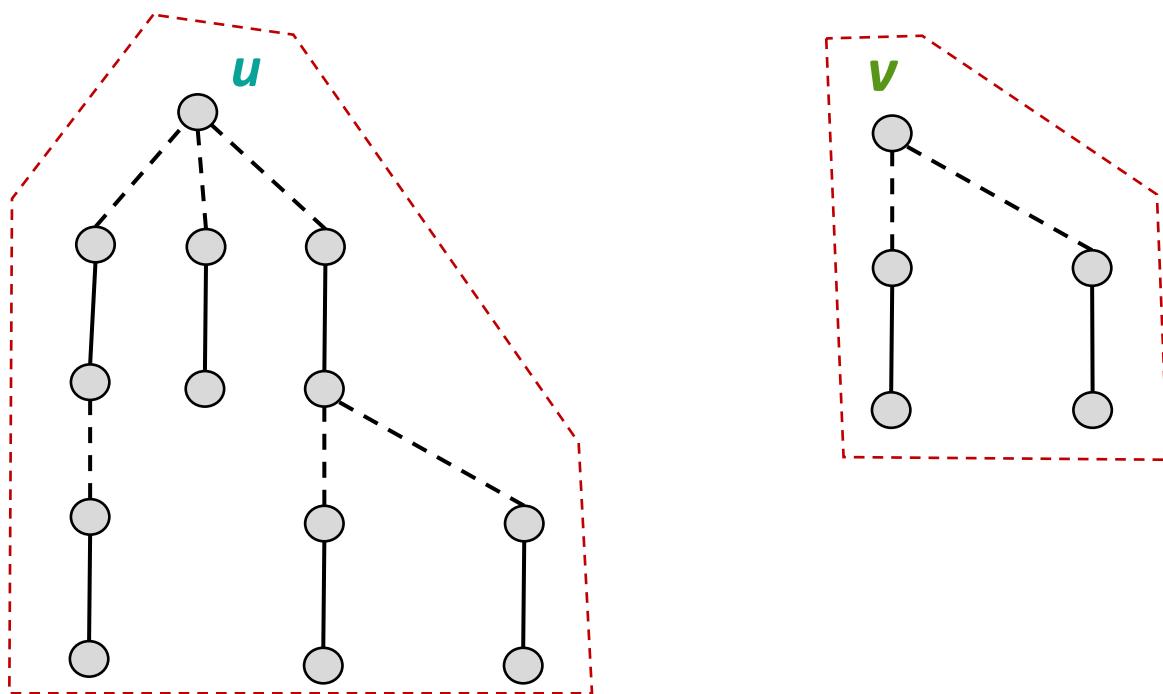
Idea of [MMSS25]

- Start from a maximal matching M
- Growing disjoint *alternating trees* of depth $O(1/\varepsilon)$
- Extend these trees to find augmentations



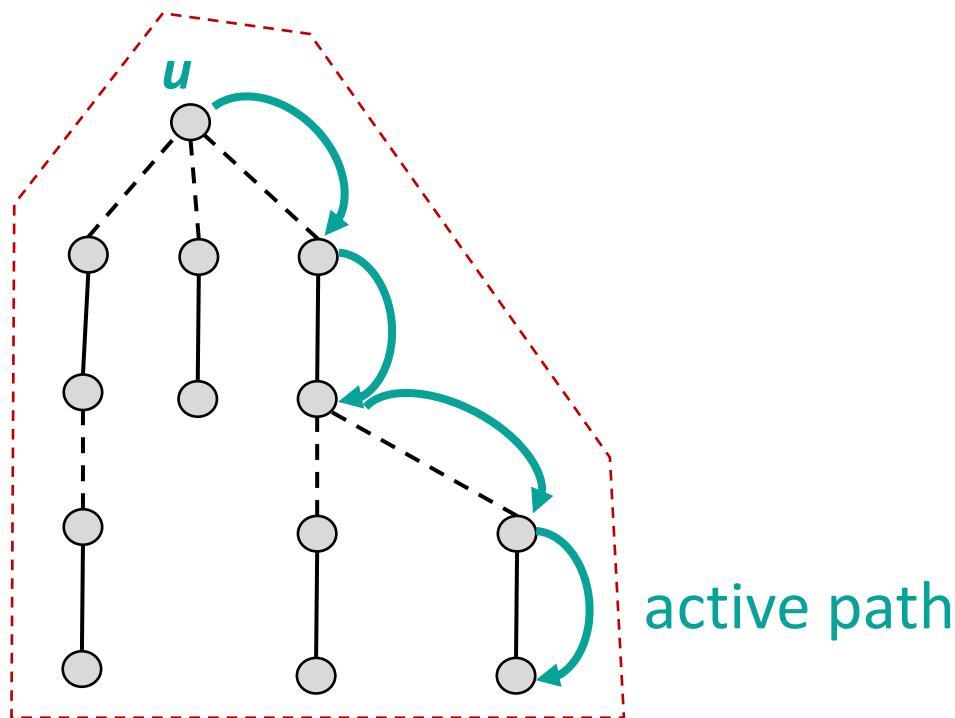
Alternating trees

- Each **free node** maintains an *alternating tree*
 - Root is the **free node**
 - Root-to-leaf paths are even-length **alternating paths**



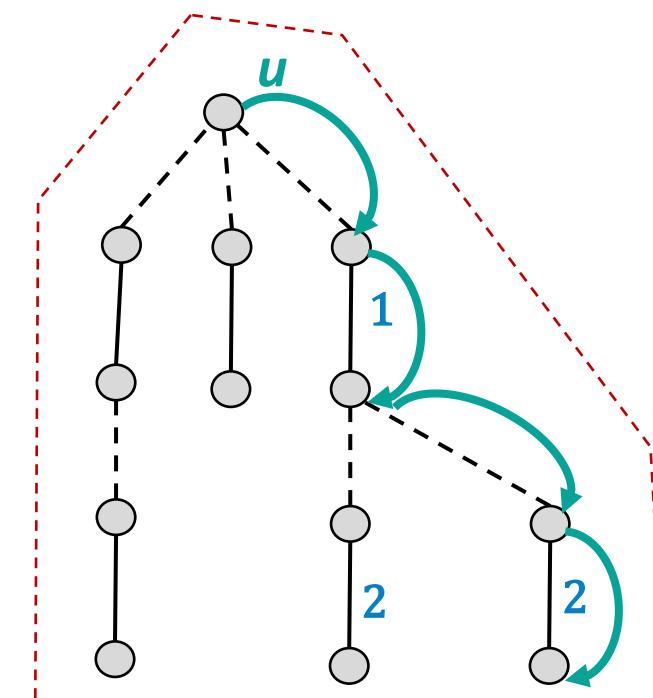
Active paths

- Each tree has an *active path*
 - Starts from root
 - Even length



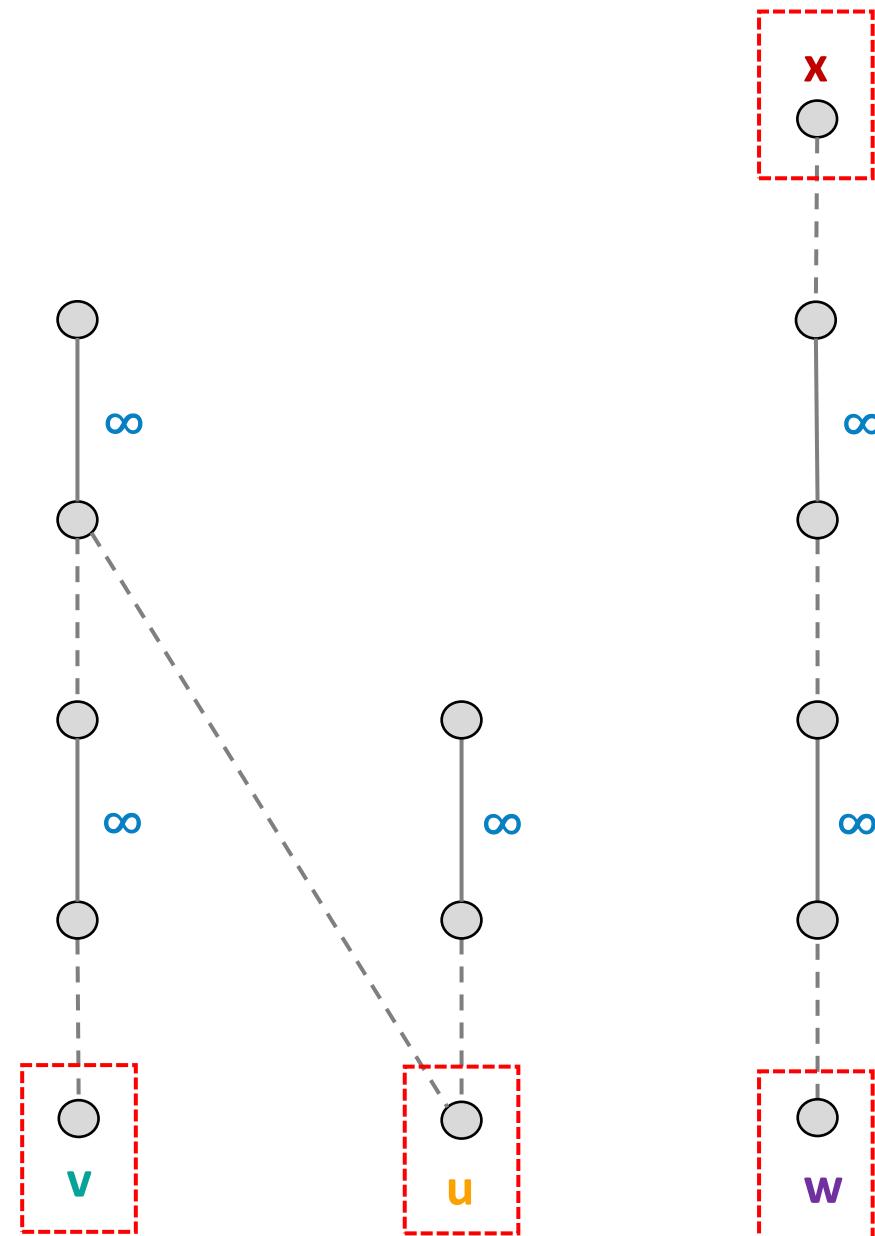
Edge label

- Each matched edge e maintains a *label* $L(e)$
- Represents the depth of e in the tree (informal)



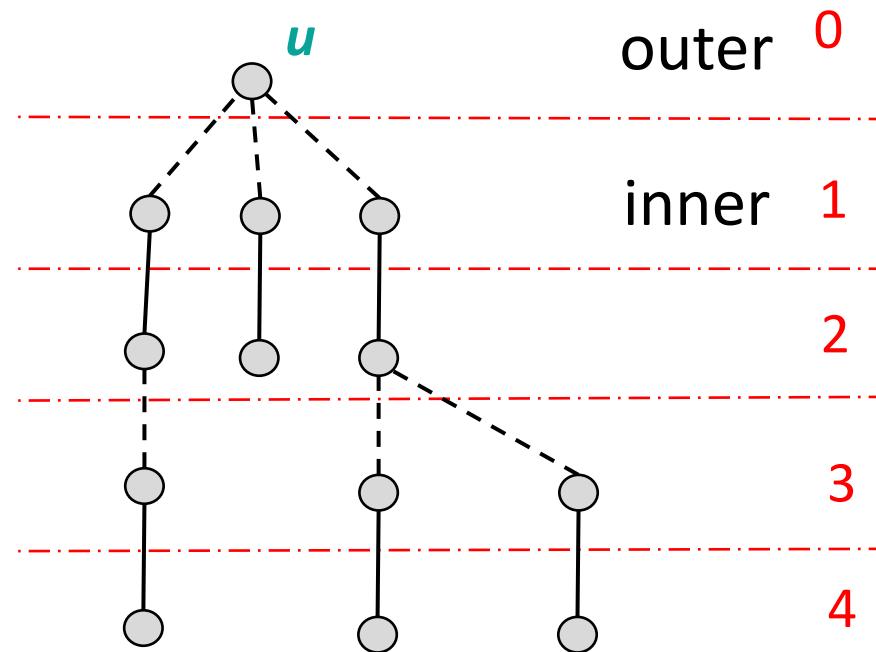
Initialization

- Each free node **itself is a tree**
- Active path is **empty**
- Label of each edge is **∞**



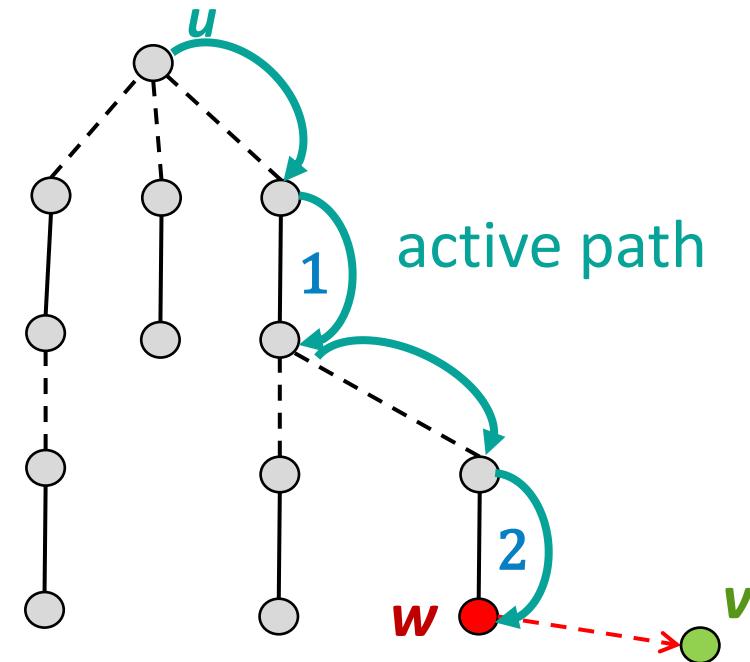
Outer / inner vertices

- Even layers: **outer vertices**
- Odd layers: **inner vertices**
- Root: **outer vertex**



Growing trees

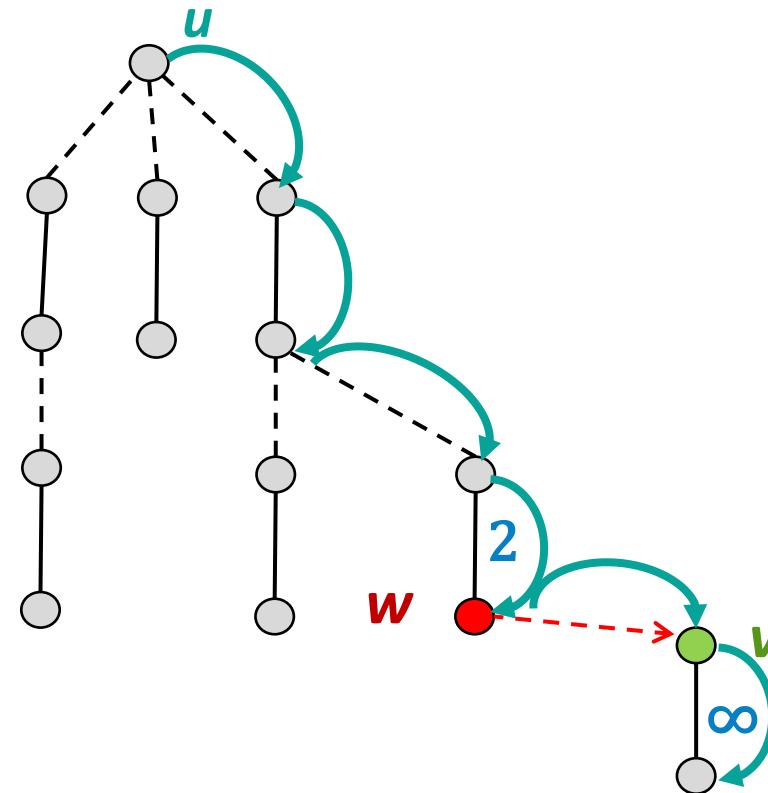
- Read edges (w, v) from stream
- Focus on edges from an **active path**



Growing trees

- Read edges (w, v) from stream
- Focus on edges from an **active path**

Case 1: v is not in any tree \rightarrow **Extend**

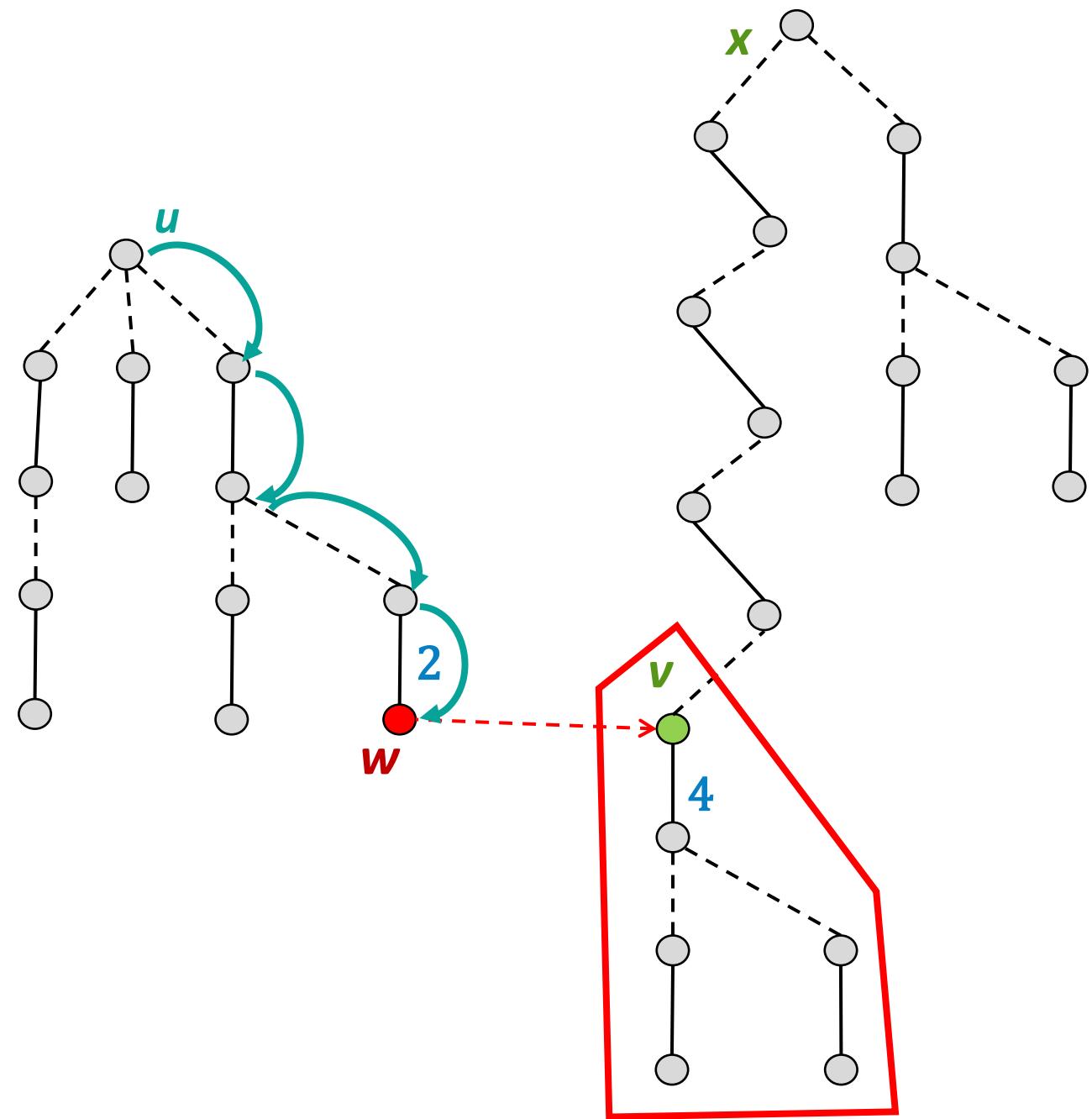


Growing trees

- Read edges (w, v) from stream
- Focus on edges from an **active path**

Case 1: v is not in any tree \rightarrow **Extend**

Case 2: v is an inner vertex \rightarrow **Overtake**
(if label can be reduced)
(also take the **subtree** of v)

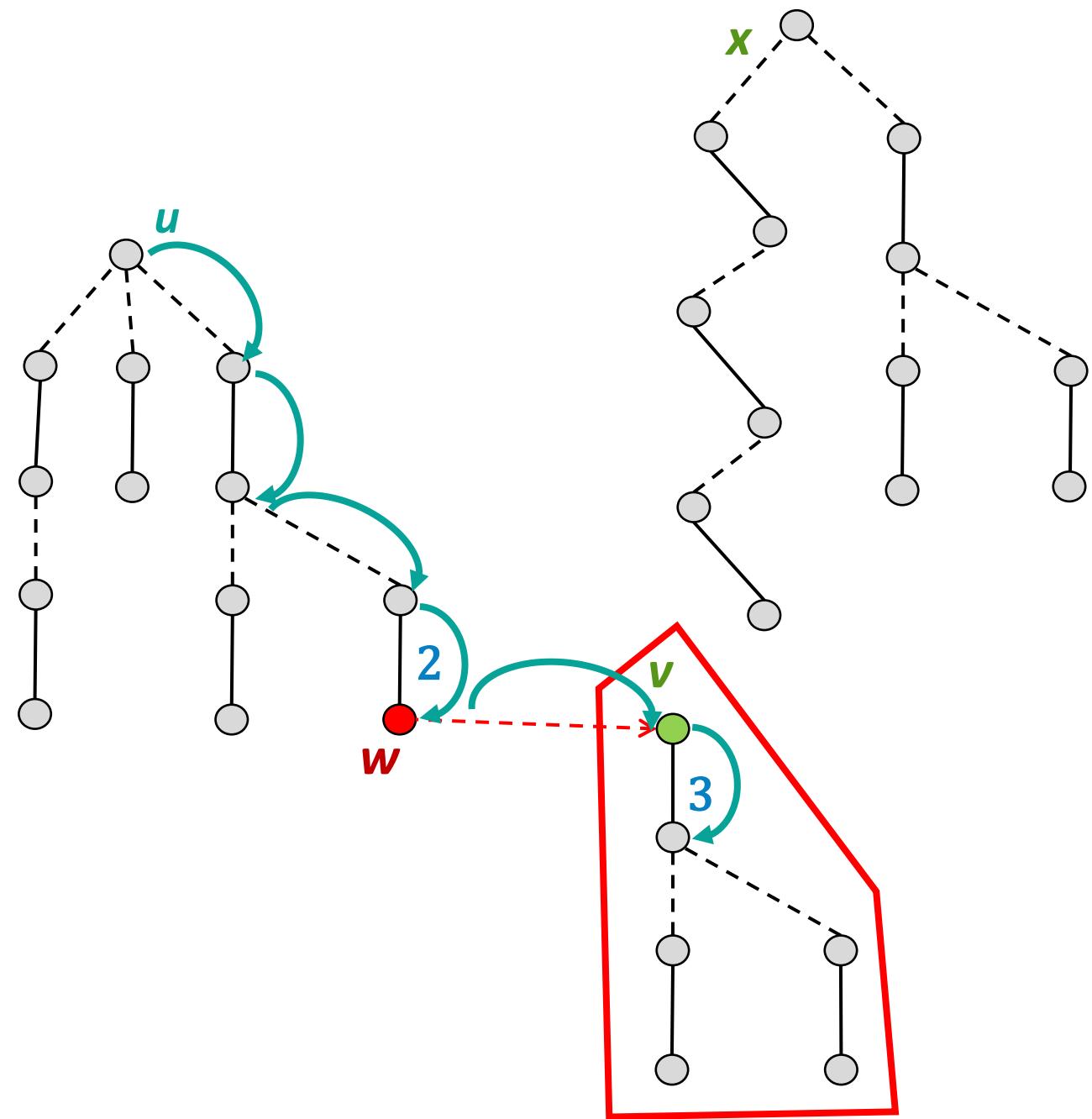


Growing trees

- Read edges (w, v) from stream
- Focus on edges from an **active path**

Case 1: v is not in any tree \rightarrow Extend

Case 2: v is an inner vertex \rightarrow **Overtake**
(if label can be reduced)
(also take the **subtree** of v)



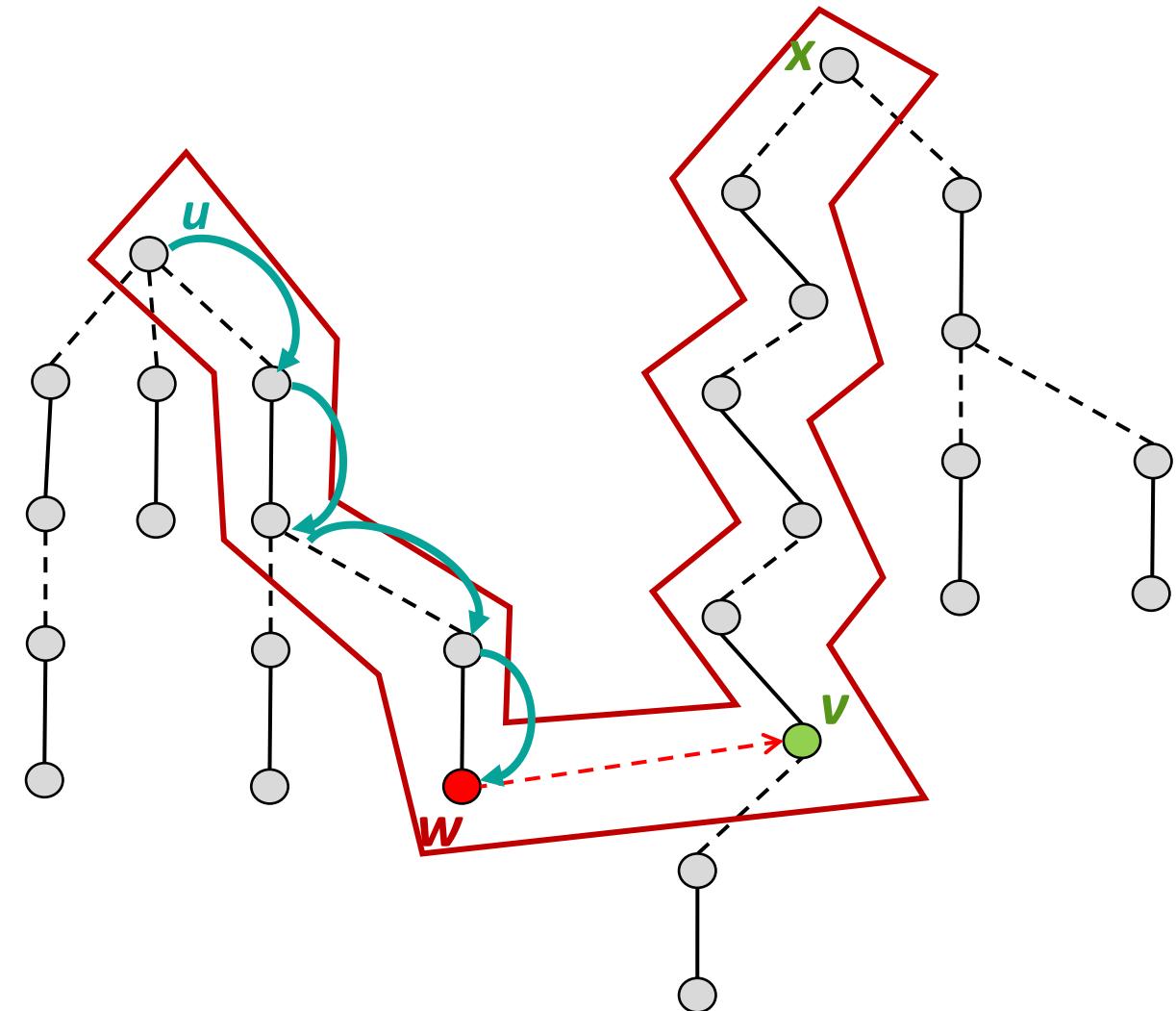
Growing trees

- Read edges (w, v) from stream
- Focus on edges from an **active path**

Case 1: v is not in any tree \rightarrow **Extend**

Case 2: v is an inner vertex \rightarrow **Overtake**

Case 3: v is an outer vertex of **another tree**
 \rightarrow **Augment**
(remove both trees)



Growing trees

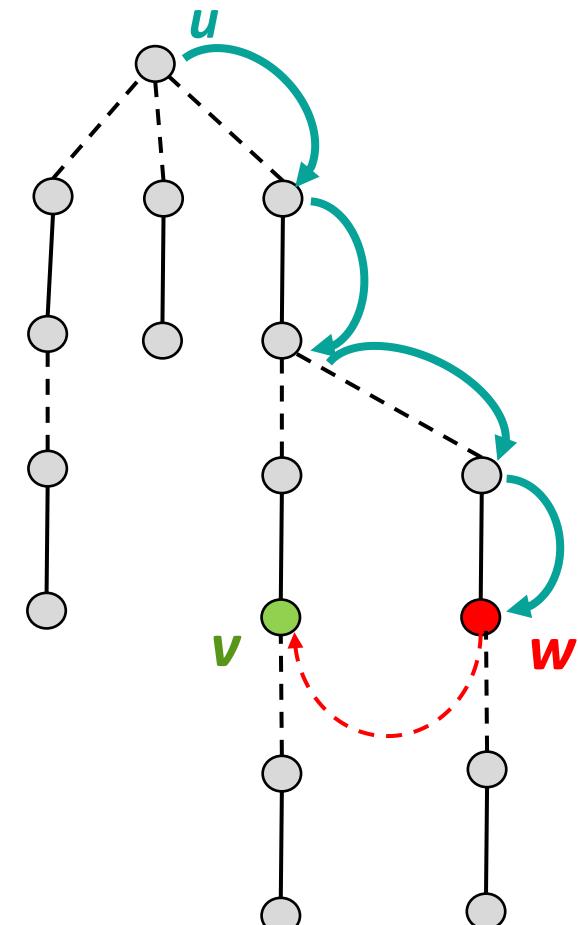
- Read edges (w, v) from stream
- Focus on edges from an **active path**

Case 1: v is not in any tree \rightarrow **Extend**

Case 2: v is an inner vertex \rightarrow **Overtake**

Case 3: v is an outer vertex of **another tree**
 \rightarrow **Augment**

Case 4: v is an outer vertex of **the same tree**
 \rightarrow **Contract** (skipped)

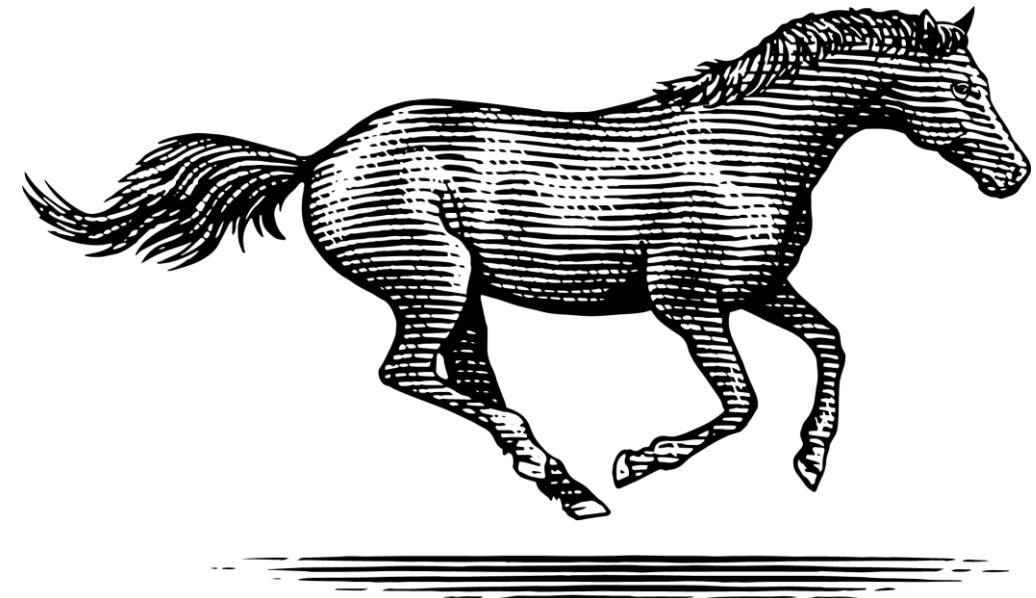


Summary

- In each pass, scan edges and perform Extend / Overtake / Augment / Contract
- Run and repeated for $\text{poly}(1/\varepsilon)$ passes
- Finds $(1+\varepsilon)$ -approx. matching
- **Properties:**
 - Tree size is always $1/\varepsilon^6$
 - Each tree can only do one operation in a pass
- [FMU22, MMSS25]'s framework: simulate each pass using $1/\varepsilon^{33}$ calls of A_{mat}

Route map (part 2)

1. Review of [MMSS25]'s algorithm
2. Simulation in distributed settings
3. Challenges in dynamic settings



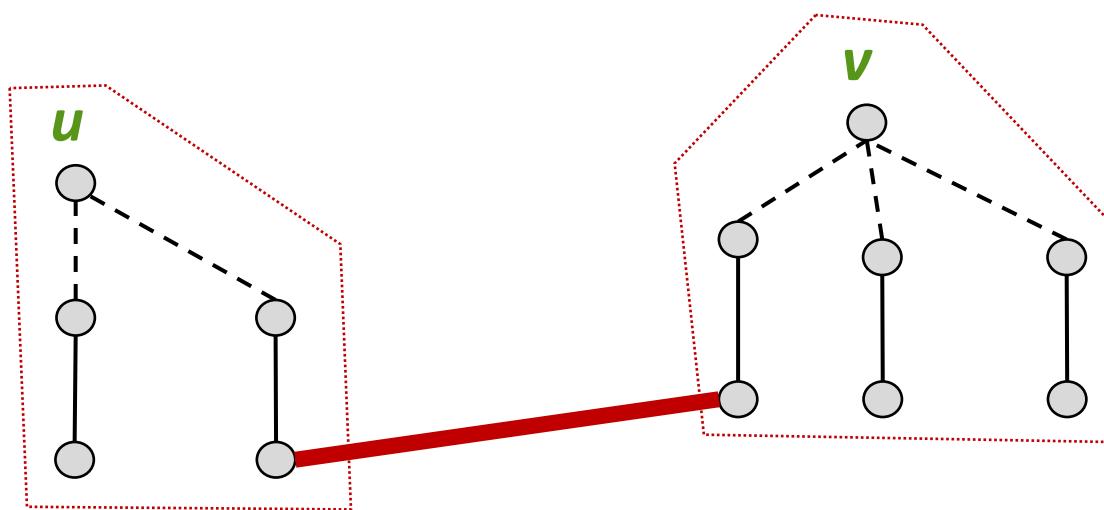
Overview - framework

- **Goal:** Find $(1+\varepsilon)$ -approx. matching using A_{mat} (constant approx.)
- **Approach:** Simulate each pass with $\varepsilon^{-1} \log(1/\varepsilon)$ calls to A_{mat}
- **Idea:** repeat two steps:
 1. Use A_{mat} to **find a matching**
 2. Perform **basic operations** on matched edges
- Focus on **Augment** and **Overtake**

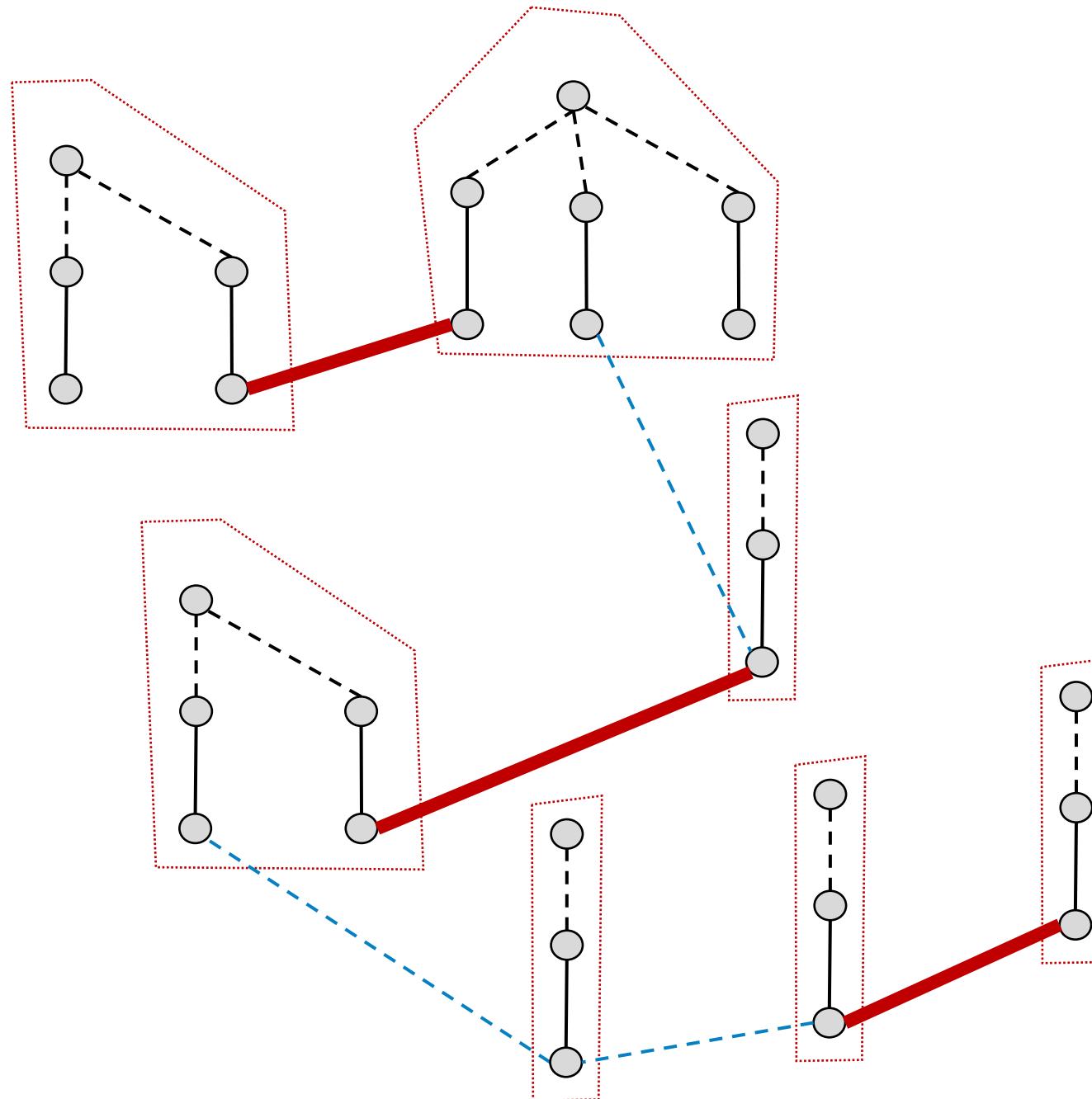
Review - Augment

- **Applied on:**
An edge between **outer vertices** of **different trees**

- **Result:**
The two trees are **removed**
Augmentation recorded

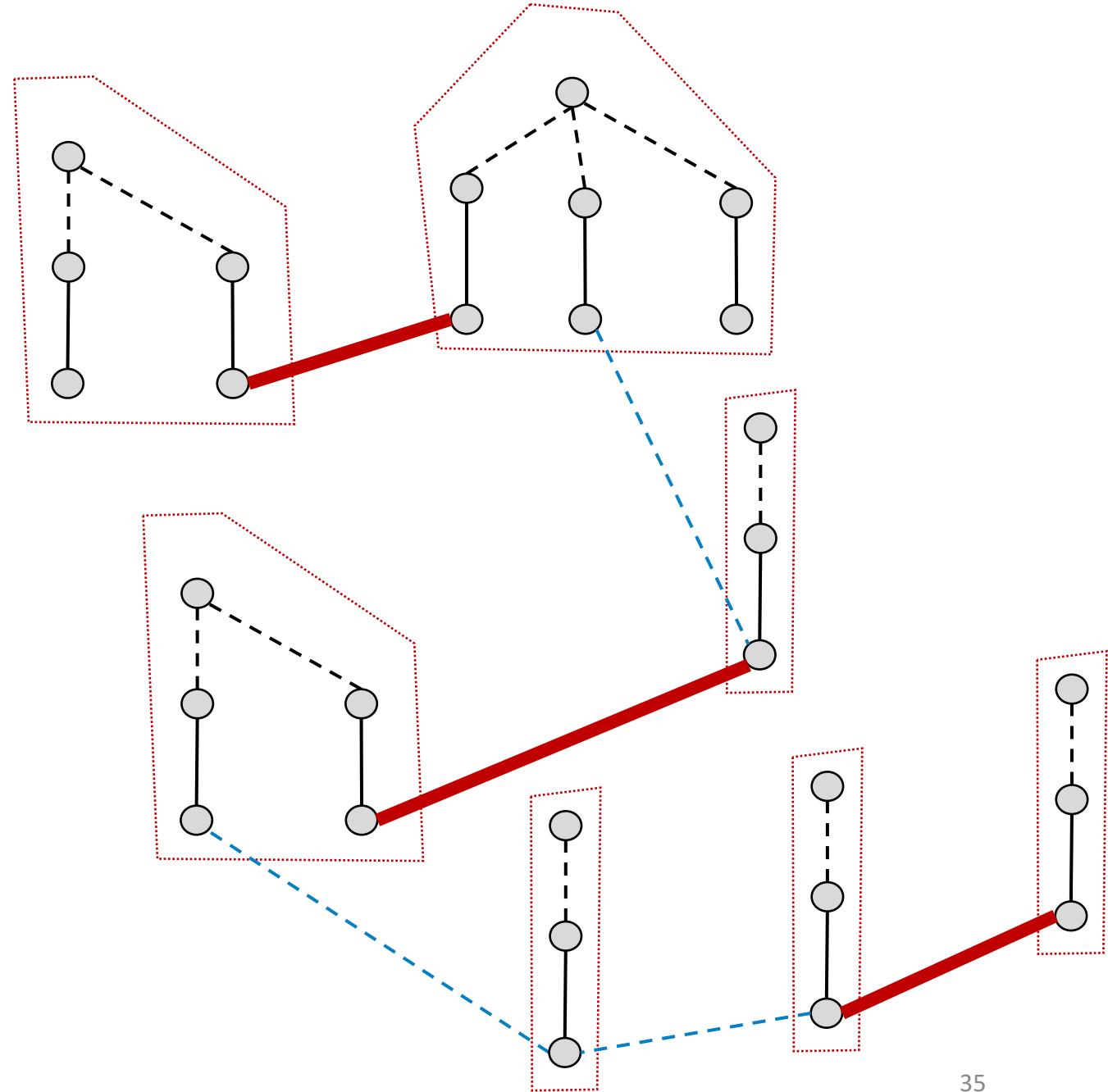


Example



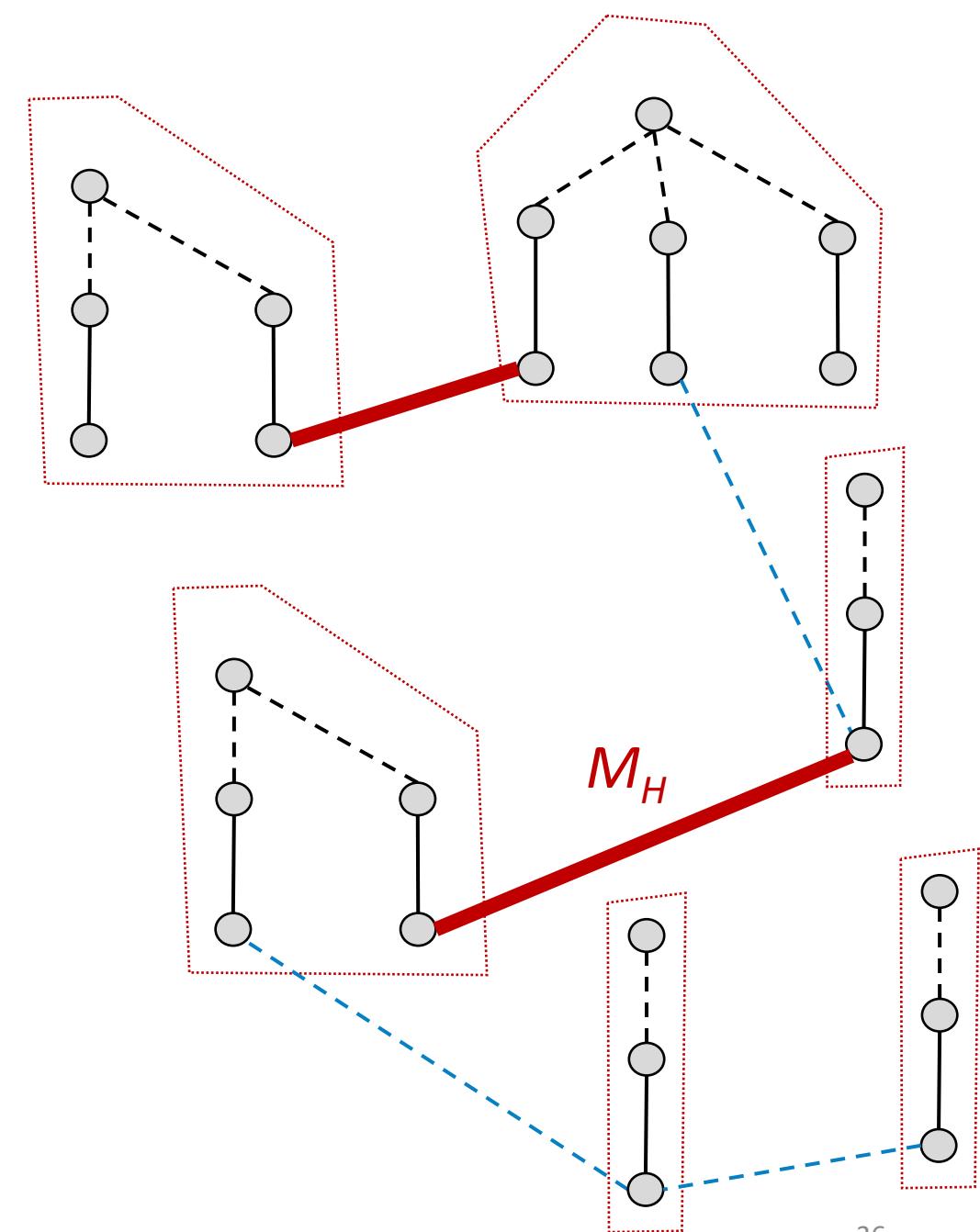
Observation

- Removed trees form a **matching**!



Simulation - Augment

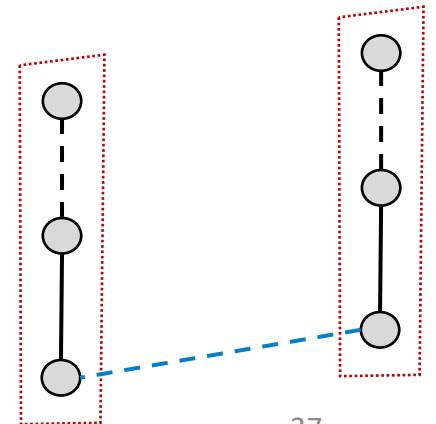
- Construct **graph H**
- Each tree is **shrunk** into a node
- Build edges between trees if
Augment is possible
- Invoking A_{mat} on H to find matching M_H



Simulation - Augment

- Construct graph H
- Each tree is **shrunk** into a node
- Build edges between trees if **Augment** is possible
- Invoking A_{mat} on H to find matching M_H
- Perform **Augment** on returned matching
- Repeat the above for $O(\log(1/\varepsilon))$ calls

(Removed)



Analysis - Augment

- Let:
 - $OPT(H)$ = current maximum matching size of H
 - r = approx. factor of A_{mat}
- In each call, A_{mat} finds an **r -approximate** matching
- All matched vertices are **removed** from H

→ $OPT(H)$ **reduced** by a $(1 - 1/r)$ factor

→ After k calls, $OPT(H)$ reduced by $(1 - 1/r)^k \approx e^{k/r}$ times

→ With $10 r \log(1/\varepsilon)$ calls, $OPT(H)$ reduced by ε^{-10} times

Analysis - Augment

- But, $OPT(H)$ is not reduced to zero! (Some augments **missed**)
- We could miss $\epsilon^{10}|M|$ augmentations
- **Claim:** it's ok to miss them
- Recall our **starting point**:

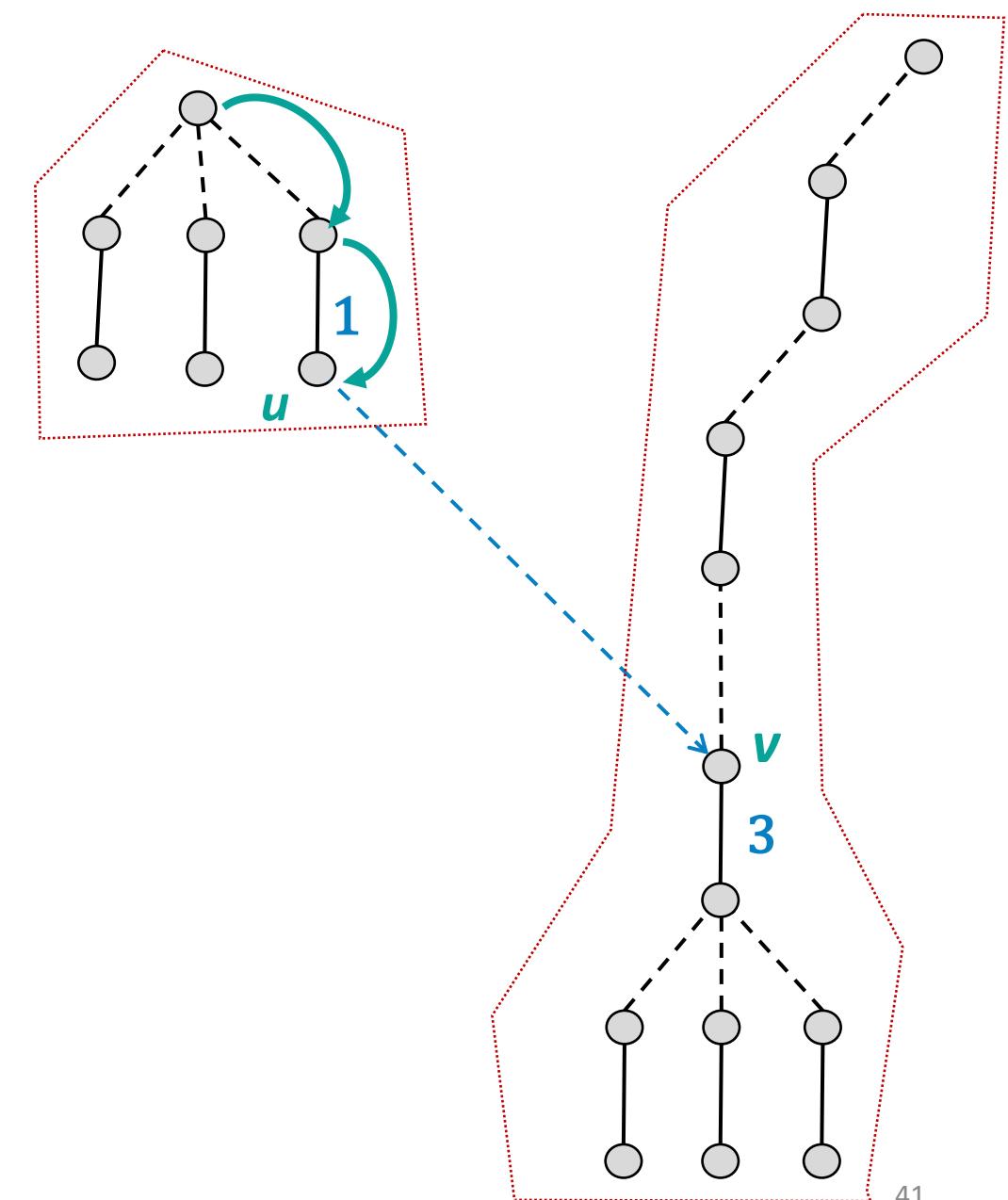
Lemma:

If M has at most $\epsilon^2|M|/6$ short augmentations, then it is a $(1+\epsilon)$ -approx.

It's ok to miss $O(\epsilon^2|M|)$ augmentations

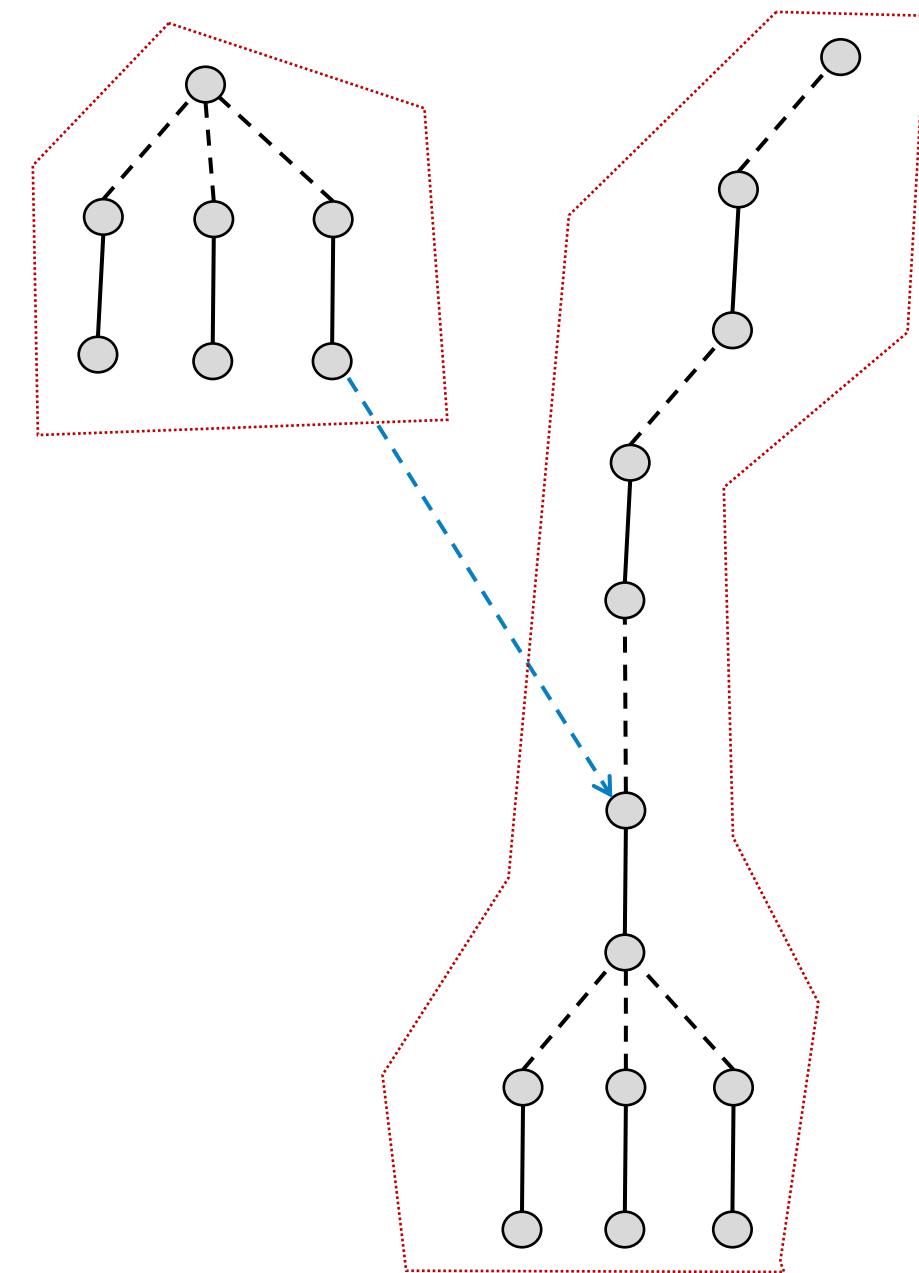
Simulation - Overtake

- **Applied on:**
 - Edges (u, v)
 - u is **head of active path**
 - v is **inner vertex**
 - label** can be reduced
 - the tree of u **has not extended**
- **Result:**
 - u **takes the subtree of v**



Simulation - Overtake

- **Same idea?**
 - Build graph H
 - Contracted each tree
 - Each edge represents a possible Overtake
- **Problem:** analysis does not apply
- For **Augment**: Matched trees are **removed**
- For **Overtake**: **Further overtake could happen**

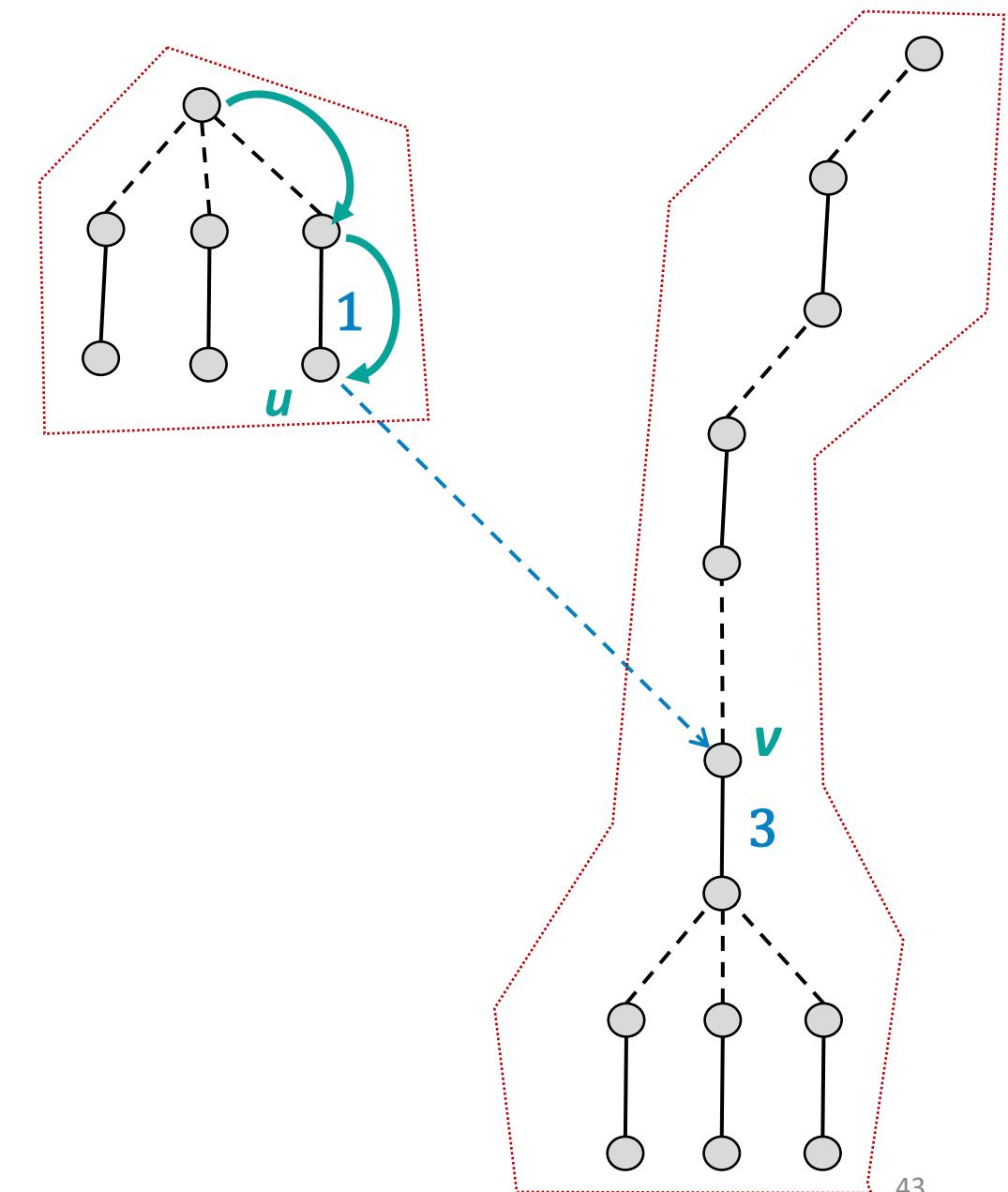


Idea

- Split into $O(1/\varepsilon)$ stages
- In stage s ,
only edges with **label s** can overtake
- **Goal:** In one stage, each tree can only
overtake / taken once

→ After calling A_{mat} ,
can remove all matched trees

→ Previous analysis applies to **one stage**



Route map (part 3)

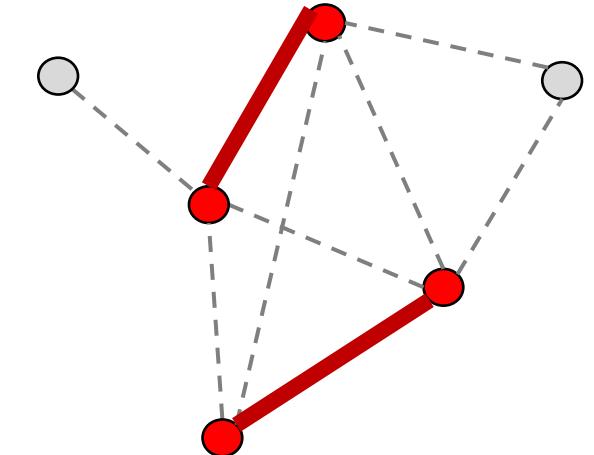
1. Review of [MMSS25]'s algorithm
2. Simulation in distributed settings
3. Challenges in dynamic settings

Dynamic setting (review)

- **Input:** Empty graph of n vertices
Sequence of edge updates (add or remove edges)
- **Goal:** Maintain a $(1+\varepsilon)$ -approx.

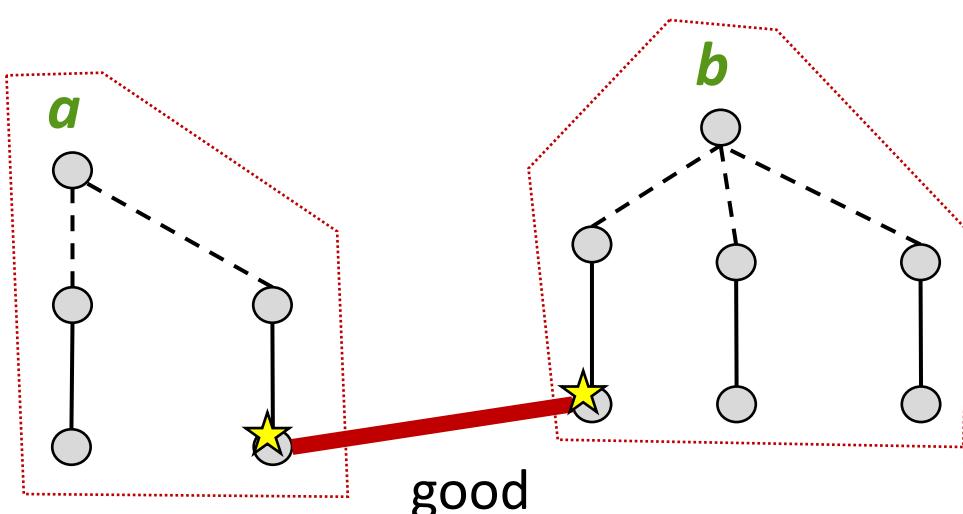
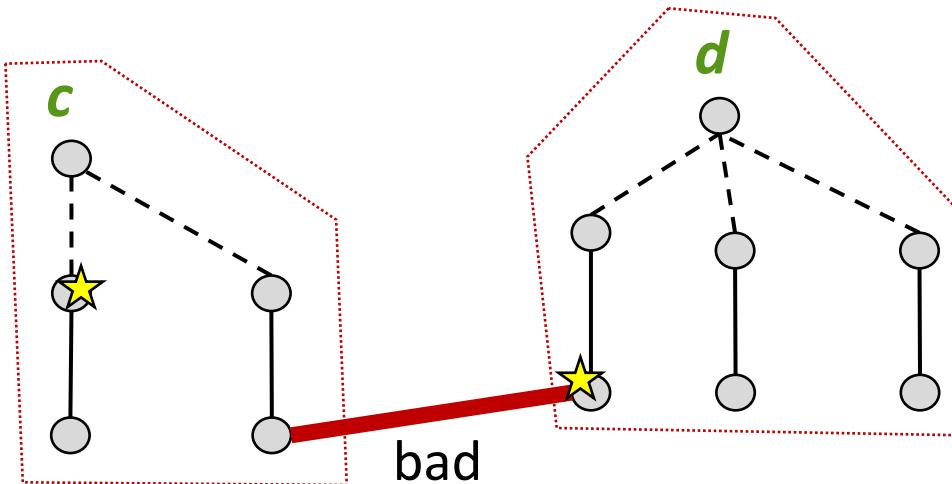
Known reduction to **static** problem

- We have a weaker A_{mat} , called A_{weak}
- **Informal definition:**
 - **Input:** graph G , vertex subset S
 - **Output:** Finds r -approximate matching of $G[S]$
 - **Constraint:** Input to A_{weak} must be prepared in $O_\varepsilon(n)$ time
- **Goal:** Call A_{weak} $poly(1/\varepsilon)$ times and finds a $(1+\varepsilon)$ -approximate matching
- **Challenge:** A_{weak} only works on **induced subgraphs**!



Idea - vertex sampling

- **Recall, Augment operation:**
Find edges between **outer vertices** of **different trees**
- Sample one outer vertex from each tree
- Suppose **semi-streaming algorithm** does Augment on (u, v)
- Our simulation works when u and v are **both sampled**

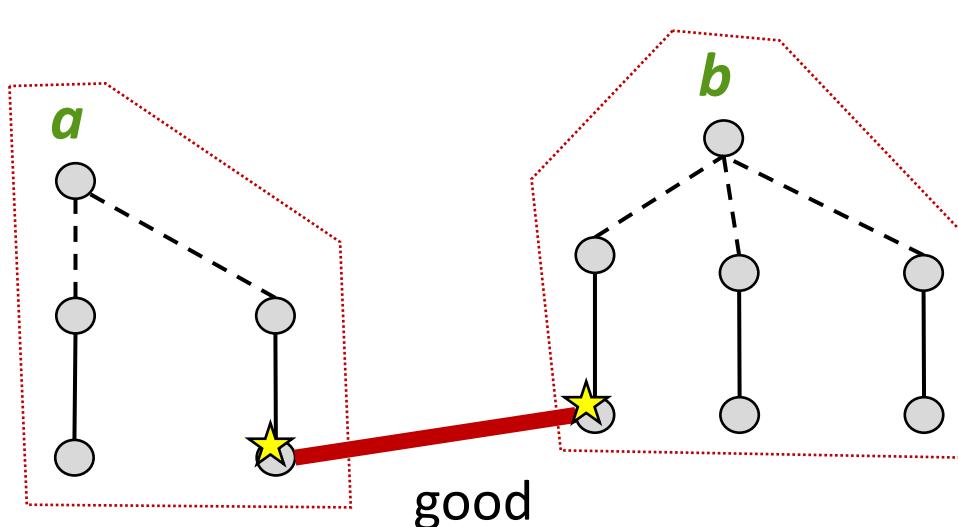
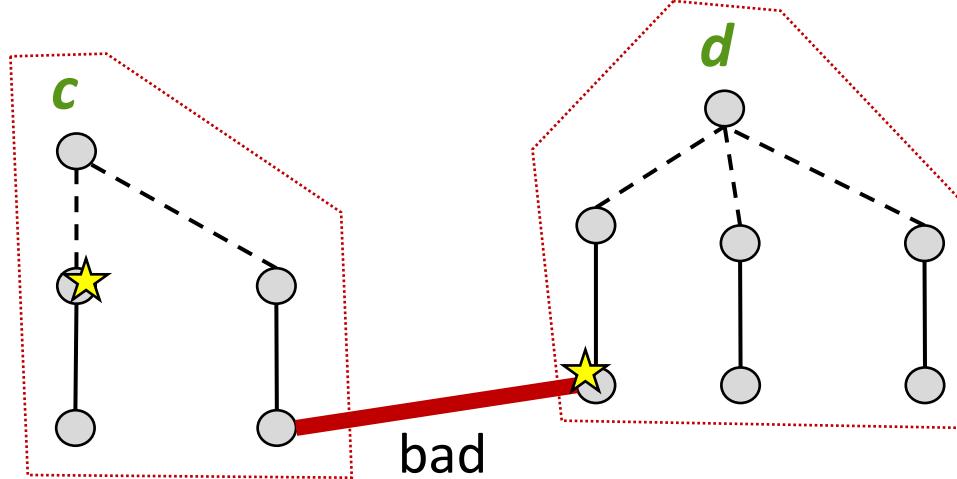


Analysis

- Size of each tree is $\text{poly}(1/\varepsilon)$

→ an edge **preserved** with probability $\text{poly}(\varepsilon)$

→ Use previous framework, with $\text{poly}(1/\varepsilon)$ times more calls



Remark

- There are some additional challenges for **overtake** and **contract**
- But the overall idea is the same

Q&A

Contact

Wen-Horng Sheu

wsheu@ucdavis.edu

