A framework for boosting matching approximation:
parallel, distributed, and dynamic

Slobodan Mitrovic Wen-Horng Sheu
(UC Davis) (UC Davis)

Maximum matching problem

Let G = (V, E) be an unweighted graph

Lletn=|V|, m=|E|
* Matching: set of edges that do not share endpoints
* Maximum matching: the matching of maximum size

e c-approximate matching:
matching of size at least 1/c times the maximum

Prior work

* The problem has been extensively studied:

* Polynomial time: [Berge ‘57] [Edmonds ‘65] [Hopcroft, Karp 73] [Micali, Vazirani ‘80]
[Gabow ‘90] [Kalantari, Shokoufandeh ‘95] ...

* Dynamic: [Bernstein, Stein ‘16] [Solomon ‘16] [Bhattacharya, Kulkarni ‘19]
[Behnezhad, tacki, Mirrokni ‘19] [Behnezhad, Khanna 22] ...

* Semi-streaming: [McGregor ‘05] [Ahn, Guha, '11] [Ahn, Guha, '13] [Kapralov, '13]
[Tirodkar, '18] [Assadi, Liu, Tarjan, '21] [Assadi, Jambulapati, Jin, Sidford, Tian, '22]
[Fischer, Mitrovic, Uitto, '22] [Huang, Su, '23] [Assadi, '24] ...

e Distributed (CONGEST, MPC): |[Behnezhad, Hajiaghayi, Harris '19] [Ghaffari, Grunau,
Jin '20] [Fischer, Mitrovi¢, Uitto, '22]...

3

(1+€)-approximate matching

* Our focus: Given € > 0, find (1+¢€)-approximation
* Motivation: finding exact maximum is inefficient in many settings
* Approaches:

(1) stand-alone algorithm

(2) boosting framework (reducing to constant approximation)

Boosting framework

* Input:
» graph G
» parameter €

» access to oracle A_ . for constant-approximate matching

mat

 What it does:
»> Calls A,_ . on adaptively chosen graphs
» (May not be subgraphs of G)
» Find (1+¢€)-approximate matching for G

First framework

By [McGregor '05]
* Was a semi-streaming algorithm
e Later adapted as a framework:

* MPC [Onak, 2018]
* Fully dynamic [Bhattacharya et al., 2023]

Number of callsto A, ,: (1/€)°/¢), independent of n!

Message: (1+&)-approx. reduces to constant approx. in many settings!

Semi-streaming setting

e No random access to G

* Edges are presented as a stream
* Algorithm can use O(n) memory (sublinear)

e Goal: minimize number of passes

Machine

-

)

O(n poly log n) memory

AVANE

data stream (edges)

MPC setting (informal)

Input stored in M machines

Each machine has O(n®*) memory, a < 1

* Machines communicate in synchronous rounds

 Goal: minimize number of rounds

-

Fully dynamic setting

Input: Empty graph of n vertices
Sequence of edge updates (add or remove edges)

Goal: Maintain a (1+€)-approximate matching

* Goal: minimize update time

[McGO5]'s framework works for all these settings!
but with exp(1/¢) calls

Recent improvement

1. By [Fischer, Mitrovi¢, Uitto, 2022]
* Improved semi-streaming algorithm
* Framework with poly(1/¢) calls
o 1/e'° for semi-streaming
e 1/e°2 for MPC, and CONGEST

2. By [Mitrovi¢, Mukherjee, Sankowski, Sheu, 2025]
* Simplify semi-streaming algorithm
 All complexities improved by (1/¢)*3

* Not clear if they work for dynamic

10

New result 1

A new framework for
CONGEST and MPC

* Adapted from [MMSS25]'s
semi-streaming algorithm

* £/ log(1/€) calls

[McGO05] (1/€)0(1/e)
[FMU22] g2
[MMSS25] g-39

[this] £’ log(1/¢)

11

New result 2

* First framework (for dynamic) with poly(1/g) calls in general graphs

[AKK24] dynamic exp(1/¢) n°t) ORS(n, 6_(n))
[Liu24] dynamic, bipartite poly(1/) w
ZQ(N/log n)
[Liu24] offline dynamic, bipartite poly(1/g) e
[this] dynamic poly(1/e) n°t) ORS(n, 6.(n))
[this] dynamic poly(1/g) w
ZQ(N/log n)

[this] offline dynamic poly(1/¢) 1058

Remark (technical details)

1. All frameworks require additional technical assumptions

* Need simple procedures for preparing the inputsto A, .

2. For bipartite graphs, better frameworks exist
(See [Assadi, Khanna, Kiss, 2024] for a list)

3. Fun fact: All frameworks above work by simulating semi-streaming algorithms
(except [Liu24]'s algorithm)

13

Route map (technical part)

1. Review of [MMSS25]'s algorithm

2. Simulation in distributed settings
(no model-specific details)

3. Challenges in dynamic settings

(using a weaker A, .)

Semi-streaming setting (review)

No random access to G
Edges presented as stream

O(n) memory

Can make multiple passes

Goal: minimize the number of passes

-

-

Machine

~

)

O(n poly log n) memory

ISVANE

data stream (edges)

15

Definition
* Free node: unmatched vertex
* Alternating path: path alternates between matched and unmatched edges

* Augmenting path: alternating path from a free node to another

16

Starting point - short augmenting paths

Lemma

Let M be a matching and Y be an inclusion-maximal set of
2/€-long vertex-disjoint augmenting paths. If |Y| < g?2|M|/6,
then M is a (1+€)-approximate maximum matching.

[Kalantari, Shokoufandeh ‘95] [McGregor ‘05] [Eggert, Kliemann, Munstermann, Srivastav ‘12]

17

ldea of [MMSS25]

e Start from a maximal matching M

* Growing disjoint alternating trees of depth O(1/¢)

-

* Extend these trees to find augmentations PRI

__

Alternating trees

e Each free node maintains an alternating tree
* Root is the free node
* Root-to-leaf paths are even-length alternating paths

-

19

Active paths

* Each tree has an active path
e Starts from root
* Even length

~~~~~~~

__________________________________

20



Edge label

 Each matched edge e maintains a label L(e)

* Represents the depth of e in the tree (informal)

21



Initialization

e Each free node itself is a tree
e Active path is empty

* Label of each edge is o

22



Outer / inner vertices

* Even layers: outer vertices
* Odd layers: inner vertices

* Root: outer vertex

u outer 0
__m__7£%\ _____________________________ .

' ) inner 1

2

23



Growing trees

* Read edges (w, v) from stream
* Focus on edges from an active path

24



Growing trees

* Read edges (w, v) from stream
* Focus on edges from an active path

Case 1: vis not in any tree — Extend

25



Growing trees

* Read edges (w, v) from stream
* Focus on edges from an active path

Case 1: vis not in any tree — Extend

Case 2: vis an inner vertex — Overtake
(if label can be reduced)
(also take the subtree of v)

26



Growing trees

* Read edges (w, v) from stream
* Focus on edges from an active path

Case 1: vis not in any tree — Extend

Case 2: vis an inner vertex — Overtake
(if label can be reduced)
(also take the subtree of v)

27



Growing trees

* Read edges (w, v) from stream
* Focus on edges from an active path

Case 1: vis not in any tree — Extend
Case 2: vis an inner vertex —» Overtake
Case 3: vis an outer vertex of another tree

— Augment
(remove both trees)

28



Growing trees

* Read edges (w, v) from stream
* Focus on edges from an active path

Case 1: vis notin any tree — Extend Qu

Case 2: vis an inner vertex — Overtake o

Case 3: vis an outer vertex of another tree | !

— Augment |

Case 4: vis an outer vertex of the same tree , I >w

— Contract (skipped) R i

Il



Summary

In each pass, scan edges and perform Extend / Overtake / Augment / Contract
Run and repeated for poly(1/<) passes
Finds (1+€)-approx. matching
Properties:
* Tree size is always 1/g°

* Each tree can only do one operation in a pass

[FMU22, MMSS25]'s framework: simulate each pass using 1/ calls of A, .

30



Route map (part 2)

1. Review of [MMSS25]'s algorithm
2. Simulation in distributed settings

3. Challenges in dynamic settings




Overview - framework

Goal: Find (1+€)-approx. matching using A_ . (constant approx.)

mat

Approach: Simulate each pass with € log(1/€) callsto A, .
Idea: repeat two steps:

1.Use A___to find a matching

mat

2. Perform basic operations on matched edges

Focus on Augment and Overtake

32



Review - Augment

* Applied on:
An edge between outer vertices of different trees

 Result:
The two trees are removed
Augmentation recorded

33



Example

<
(99]




............

Observation

* Removed trees form a
matching!




Simulation - Augment

Construct graph H
Each tree is shrunk into a node

Build edges between trees if
Augment is possible

Invoking A . on H to find matching M|,




Simulation - Augment

Construct graph H
Each tree is shrunk into a node

(Removed)

Build edges between trees if
Augment is possible

Invoking A . on H to find matching M|,

Perform Augment on returned matching

Repeat the above for O(log(1/€)) calls I ________ i



Analysis - Augment

* Let:
 OPT(H) = current maximum matching size of H
* r=approx. factorof A__.

* Ineachcall, A__. finds an r-approximate matching

mat
* All matched vertices are removed from H

—> OPT(H) reduced by a (1 — 1/r) factor

— After k calls, OPT(H) reduced by (1 — 1/r)¢ =~ ek/" times

— With 10 r log(1/€) calls, OPT(H) reduced by £1° times

38



Analysis - Augment

But, OPT(H) is not reduced to zero! (Some augments missed)
We could miss £'°| M| augmentations

Claim: it's ok to miss them

Recall our starting point:

Lemma:
If M has at most‘e2 | M|/6‘short augmentations, then it is a (1+€)-approx.

\

It's ok to miss O(e?| M|) augmentations

39



Simulation - Overtake

* Applied on:
Edges (u, v)
u is head of active path
V is inner vertex
label can be reduced
the tree of u has not extended

 Result:
u takes the subtree of v




Simulation - Overtake

Same idea?

e Build graph H

* Contracted each tree

* Each edge represents a possible Overtake
Problem: analysis does not apply

For Augment: Matched trees are removed

For Overtake: Further overtake could happen




ldea

* Splitinto O(1/¢) stages

* |n stage s,
only edges with label s can overtake

* Goal: In one stage, each tree can only
overtake / taken once

— After calling A A

mat?

can remove all matched trees i I i
— Previous analysis applies to one stage




Route map (part 3)

1. Review of [MMSS25]'s algorithm
2. Simulation in distributed settings

3. Challenges in dynamic settings




Dynamic setting (review)

* Input: Empty graph of n vertices
Sequence of edge updates (add or remove edges)

* Goal: Maintain a (1+€)-approx.

45



Known reduction to static problem

~ o
-~
-~ o
-

We have a weaker A, ., called A ., o N/

mat’ o -
Informal definition: /

* Input: graph G, vertex subset S
e Output: Finds r-approximate matching of G[S]

* Constraint: Inputto A ., must be prepared in O_(n) time

wea

Goal: Call A ., poly(1/€) times and finds a (1+€)-approximate matching

Challenge: A, only works on induced subgraphs!

wea

46



ldea - vertex sampling

Recall, Augment operation:

Find edges between outer vertices of different trees
Sample one outer vertex from each tree
Suppose semi-streaming algorithm does Augment on (u, v)
Our simulation works when u and v are both sampled

47



Analysis

 Size of each tree is poly(1/¢)

— an edge preserved with probability poly(g)

— Use previous framework, with poly(1/g) times more calls

48



Remark

* There are some additional challenges for overtake and contract

e But the overall idea is the same



Q&A Contact

Wen-Horng Sheu
wsheu@ucdavis.edu

50



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

