
A framework for boosting matching approximation:
parallel, distributed, and dynamic

Slobodan Mitrović
(UC Davis)

Wen-Horng Sheu
(UC Davis)

Maximum matching problem

• Let G = (V, E) be an unweighted graph

• Let n = |V|, m = |E|

• Matching: set of edges that do not share endpoints

• Maximum matching: the matching of maximum size

• c-approximate matching:
 matching of size at least 1/c times the maximum

2

Prior work

• The problem has been extensively studied:

• Polynomial time: [Berge ‘57] [Edmonds ‘65] [Hopcroft, Karp ‘73] [Micali, Vazirani ‘80]
[Gabow ‘90] [Kalantari, Shokoufandeh ‘95] …

• Dynamic: [Bernstein, Stein ‘16] [Solomon ‘16] [Bhattacharya, Kulkarni ‘19]
[Behnezhad, Łącki, Mirrokni ‘19] [Behnezhad, Khanna ‘22] …

• Semi-streaming: [McGregor ‘05] [Ahn, Guha, '11] [Ahn, Guha, '13] [Kapralov, '13]
[Tirodkar, '18] [Assadi, Liu, Tarjan, '21] [Assadi, Jambulapati, Jin, Sidford, Tian, '22]
[Fischer, Mitrović, Uitto, '22] [Huang, Su, '23] [Assadi, '24] ...

• Distributed (CONGEST, MPC): [Behnezhad, Hajiaghayi, Harris '19] [Ghaffari, Grunau,
Jin '20] [Fischer, Mitrović, Uitto, '22]... 3

(1+ε)-approximate matching

• Our focus: Given ε > 0, find (1+ε)-approximation

• Motivation: finding exact maximum is inefficient in many settings

• Approaches:

(1) stand-alone algorithm

(2) boosting framework (reducing to constant approximation)

4

Boosting framework

• Input:
➢ graph G
➢ parameter ε
➢ access to oracle Amat for constant-approximate matching

• What it does:
➢ Calls Amat on adaptively chosen graphs
➢ (May not be subgraphs of G)
➢ Find (1+ε)-approximate matching for G

5

First framework

• By [McGregor '05]

• Was a semi-streaming algorithm

• Later adapted as a framework:
• MPC [Onak, 2018]

• Fully dynamic [Bhattacharya et al., 2023]

• Number of calls to Amat : (1/ε)O(1/ε), independent of n!

• Message: (1+ε)-approx. reduces to constant approx. in many settings!

6

Semi-streaming sett ing

• No random access to G
• Edges are presented as a stream
• Algorithm can use Õ (n) memory (sublinear)

• Goal: minimize number of passes

7

Machine

O(n poly log n) memory data stream (edges)

....

MPC sett ing (informal)

8

• Input stored in M machines

• Each machine has O(nα) memory, α < 1

• Machines communicate in synchronous rounds

• Goal: minimize number of rounds

Machines

Ful ly dynamic sett ing

9

• Input: Empty graph of n vertices
 Sequence of edge updates (add or remove edges)

• Goal: Maintain a (1+ε)-approximate matching

• Goal: minimize update time

• [McG05]'s framework works for all these settings!
• but with exp(1/ε) calls

Recent improvement

1. By [Fischer, Mitrović, Uitto, 2022]
• Improved semi-streaming algorithm
• Framework with poly(1/ε) calls
• 1/ε19 for semi-streaming
• 1/ε52 for MPC, and CONGEST

2. By [Mitrović, Mukherjee, Sankowski, Sheu, 2025]
• Simplify semi-streaming algorithm
• All complexities improved by (1/ε)13

• Not clear if they work for dynamic

10

New result 1

• A new framework for
CONGEST and MPC

• Adapted from [MMSS25]'s
semi-streaming algorithm

• ε-7 log(1/ε) calls

11

Reference # calls to Amat

[McG05] (1/ε)O(1/ε)

[FMU22] ε-52

[MMSS25] ε-39

[this] ε-7 log(1/ε)

New result 2

• First framework (for dynamic) with poly(1/ε) calls in general graphs

12

Reference Setting Complexity in ε Complexity in n

[AKK24] dynamic exp(1/ε) no(1) ORS(n, θε(n))

[Liu24] dynamic, bipartite poly(1/ε) 𝑛

2Ω(log 𝑛)

[Liu24] offline dynamic, bipartite poly(1/ε) n0.58

[this] dynamic poly(1/ε) no(1) ORS(n, θε(n))

[this] dynamic poly(1/ε) 𝑛

2Ω(log 𝑛)

[this] offline dynamic poly(1/ε) n0.58

Remark (technical detai ls)

1. All frameworks require additional technical assumptions

• Need simple procedures for preparing the inputs to Amat

2. For bipartite graphs, better frameworks exist
 (See [Assadi, Khanna, Kiss, 2024] for a list)

3. Fun fact: All frameworks above work by simulating semi-streaming algorithms
 (except [Liu24]'s algorithm)

13

Route map (technical part)

1. Review of [MMSS25]'s algorithm

2. Simulation in distributed settings
 (no model-specific details)

3. Challenges in dynamic settings
 (using a weaker Amat)

14

Semi-streaming sett ing (review)

• No random access to G
• Edges presented as stream
• Õ (n) memory
• Can make multiple passes

• Goal: minimize the number of passes

15

Machine

O(n poly log n) memory data stream (edges)

....

Def in i t ion

16

• Free node: unmatched vertex

• Alternating path: path alternates between matched and unmatched edges

• Augmenting path: alternating path from a free node to another

u v

Start ing po int - short augment ing paths

[Kalantari, Shokoufandeh ‘95] [McGregor ‘05] [Eggert, Kliemann, Munstermann, Srivastav ‘12]

Let M be a matching and Y be an inclusion-maximal set of
2/ε - long vertex-disjoint augmenting paths. If |Y| < ε2|M|/6,
then M is a (1+ε)-approximate maximum matching.

Lemma

17

Idea of [MMSS25]

• Start from a maximal matching M

• Growing disjoint alternating trees of depth O(1/ε)

• Extend these trees to find augmentations

18

u

v

Alternating trees

• Each free node maintains an alternating tree
• Root is the free node
• Root-to-leaf paths are even-length alternating paths

19

u v

Active paths

• Each tree has an active path
• Starts from root
• Even length

20

u

active path

Edge label

• Each matched edge e maintains a label L(e)

• Represents the depth of e in the tree (informal)

21

u

1

2 2

v

Init ia l izat ion

∞

∞ ∞

22

u w

∞

∞

x

• Each free node itself is a tree

• Active path is empty

• Label of each edge is ∞

Outer / inner vert ices

• Even layers: outer vertices

• Odd layers: inner vertices

• Root: outer vertex

23

0

1

2

3

4

outer

inner

u

• Read edges (w, v) from stream
• Focus on edges from an active path

u

w v
2

active path

Growing t rees

24

1

• Read edges (w, v) from stream
• Focus on edges from an active path

Case 1: v is not in any tree → Extend

u

v

∞

2
w

Growing t rees

25

u

v

4

2

Case 1: v is not in any tree → Extend

Case 2: v is an inner vertex → Overtake
(if label can be reduced)
(also take the subtree of v) w

• Read edges (w, v) from stream
• Focus on edges from an active path

26

x

Growing t rees

u

v

3

2

Case 1: v is not in any tree → Extend

Case 2: v is an inner vertex → Overtake
(if label can be reduced)
(also take the subtree of v) w

• Read edges (w, v) from stream
• Focus on edges from an active path

27

x

Growing t rees

Case 1: v is not in any tree → Extend

Case 2: v is an inner vertex → Overtake

Case 3: v is an outer vertex of another tree
→ Augment
(remove both trees)

u

v

w

• Read edges (w, v) from stream
• Focus on edges from an active path

28

x

Growing t rees

u

w

• Read edges (w, v) from stream
• Focus on edges from an active path

Case 1: v is not in any tree → Extend

Case 2: v is an inner vertex → Overtake

Case 3: v is an outer vertex of another tree
→ Augment

Case 4: v is an outer vertex of the same tree
→ Contract (skipped) v

29

Growing t rees

30

• In each pass, scan edges and perform Extend / Overtake / Augment / Contract

• Run and repeated for poly(1/ε) passes

• Finds (1+ε)-approx. matching

• Properties:
• Tree size is always 1/ε6

• Each tree can only do one operation in a pass

• [FMU22, MMSS25]'s framework: simulate each pass using 1/ε33 calls of Amat

Summary

Route map (part 2)

1. Review of [MMSS25]'s algorithm

2. Simulation in distributed settings

3. Challenges in dynamic settings

31

32

Overv iew - f ramework

• Goal: Find (1+ε)-approx. matching using Amat (constant approx.)

• Approach: Simulate each pass with ε-1 log(1/ε) calls to Amat

• Idea: repeat two steps:

1. Use Amat to find a matching

2. Perform basic operations on matched edges

• Focus on Augment and Overtake

33

Review - Augment

• Applied on:
 An edge between outer vertices of different trees

• Result:
 The two trees are removed
 Augmentation recorded

u
v

34

Example

35

Observat ion

• Removed trees form a
matching!

36

S imulat ion - Augment

• Construct graph H

• Each tree is shrunk into a node

• Build edges between trees if
 Augment is possible

• Invoking Amat on H to find matching MH

MH

37

S imulat ion - Augment

• Construct graph H

• Each tree is shrunk into a node

• Build edges between trees if
 Augment is possible

• Invoking Amat on H to find matching MH

• Perform Augment on returned matching

• Repeat the above for O(log(1/ε)) calls

(Removed)

38

Analys is - Augment

• Let:
• OPT(H) = current maximum matching size of H
• r = approx. factor of Amat

• In each call, Amat finds an r-approximate matching

• All matched vertices are removed from H

→ OPT(H) reduced by a (1 − 1/r) factor

→ After k calls, OPT(H) reduced by (1 − 1/r)k  ek/r times

→ With 10 r log(1/ε) calls, OPT(H) reduced by ε-10 times

39

Analys is - Augment

• But, OPT(H) is not reduced to zero! (Some augments missed)

• We could miss ε10|M| augmentations

• Claim: it's ok to miss them

• Recall our starting point:

Lemma:
If M has at most ε2|M|/6 short augmentations, then it is a (1+ε)-approx.

It's ok to miss O(ε2|M|) augmentations

41

S imulat ion - Overtake

• Applied on:
 Edges (u, v)
 u is head of active path

 v is inner vertex
 label can be reduced
 the tree of u has not extended

• Result:
 u takes the subtree of v

u

1

v

3

42

S imulat ion - Overtake

• Same idea?
• Build graph H
• Contracted each tree
• Each edge represents a possible Overtake

• Problem: analysis does not apply

• For Augment: Matched trees are removed

• For Overtake: Further overtake could happen

43

Idea

• Split into O(1/ε) stages

• In stage s,
 only edges with label s can overtake

• Goal: In one stage, each tree can only
 overtake / taken once

→ After calling Amat,
 can remove all matched trees

→ Previous analysis applies to one stage

u

1

v

3

Route map (part 3)

1. Review of [MMSS25]'s algorithm

2. Simulation in distributed settings

3. Challenges in dynamic settings

44

Dynamic sett ing (review)

45

• Input: Empty graph of n vertices
 Sequence of edge updates (add or remove edges)

• Goal: Maintain a (1+ε)-approx.

46

Known reduct ion to stat ic problem

• We have a weaker Amat, called Aweak

• Informal definition:

• Input: graph G, vertex subset S

• Output: Finds r-approximate matching of G[S]

• Constraint: Input to Aweak must be prepared in Oε(n) time

• Goal: Call Aweak poly(1/ε) times and finds a (1+ε)-approximate matching

• Challenge: Aweak only works on induced subgraphs!

47

Idea - vertex sampl ing

• Recall, Augment operation:
 Find edges between outer vertices of different trees

• Sample one outer vertex from each tree
• Suppose semi-streaming algorithm does Augment on (u, v)
• Our simulation works when u and v are both sampled

a
b

c
d

good
bad

48

Analys is

• Size of each tree is poly(1/ε)

→ an edge preserved with probability poly(ε)

→ Use previous framework, with poly(1/ε) times more calls

a
b

c
d

good
bad

49

Remark

• There are some additional challenges for overtake and contract

• But the overall idea is the same

Q&A

50

Contact
Wen-Horng Sheu

wsheu@ucdavis.edu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

