Faster MPC Algorithms for Allocation in Uniformly Sparse Graphs

Jakub Łącki

Slobodan Mitrović

Wen-Horng Sheu

Google Research

UC Davis

UC Davis

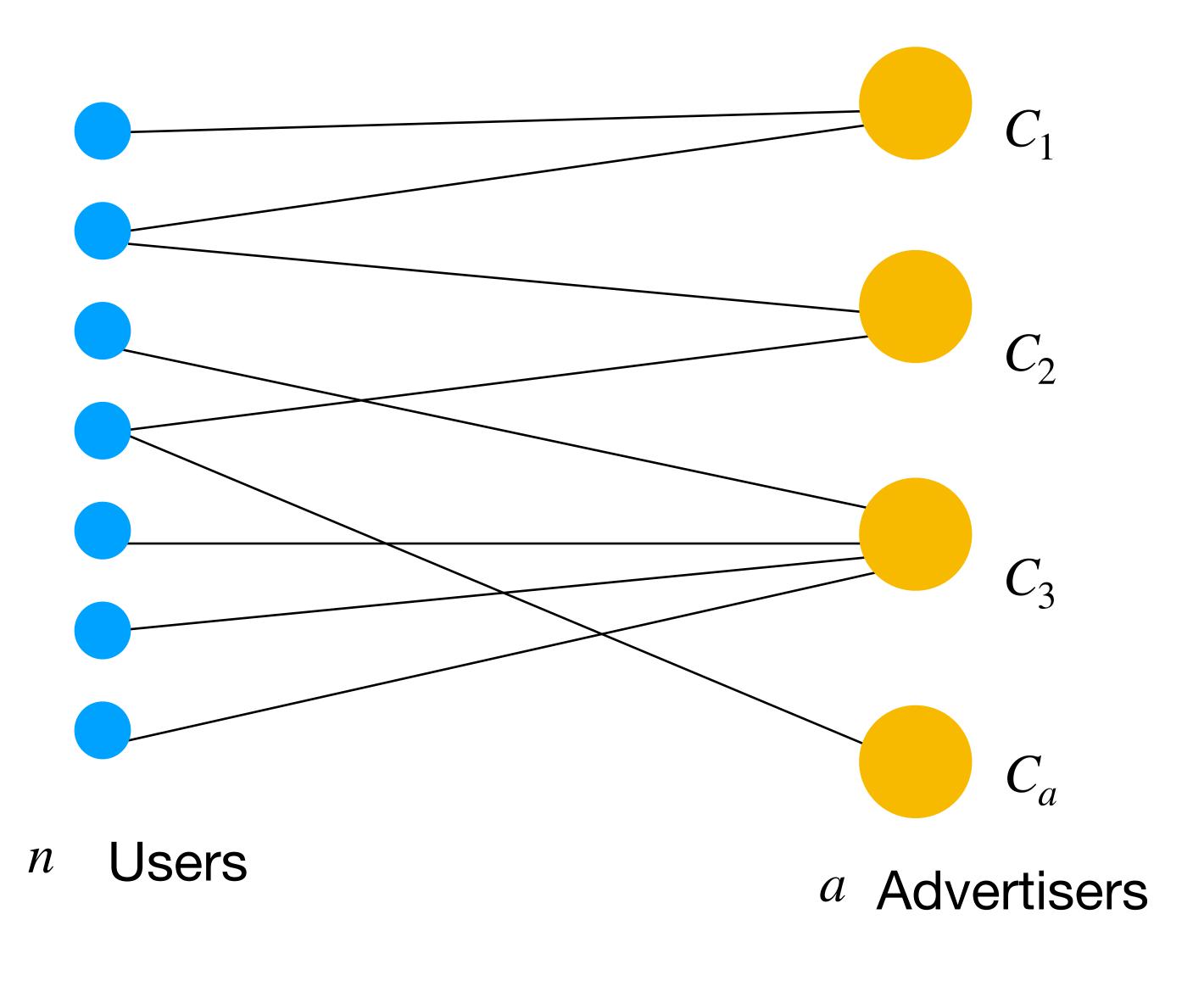
Srikkanth R

UC Davis

Overview of the Talk

- 1. Problem definition and notation
- 2. Overview of prior work and our results
- 3. A fast allocation algorithm in the LOCAL model
- 4. Fast implementation in sublinear MPC model

The Allocation Problem



I/p:

Bipartite graph with node capacities $C_v \ge 1$

O/p:

Subset of edges M

Constraints:

- (i) Each user has \leq 1 edge
- (i) Each ad v has $\leq C_v$ edges

Objective:

Maximize | M |

Prior Work on Allocation

[Dhillon KDD '01]

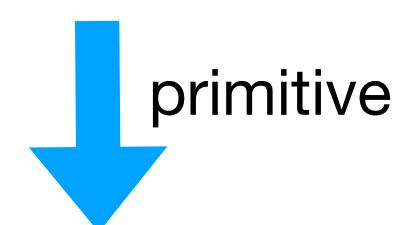
[Mehta, Saberi, Vazirani, Vazirani, Vazirani]

[Agrawal, Mirrokni, Zadimoghaddam ICML '18]

[Ahmadian, Liu, Peng, Zadimoghaddam ITCS '22] Co-clustering documents

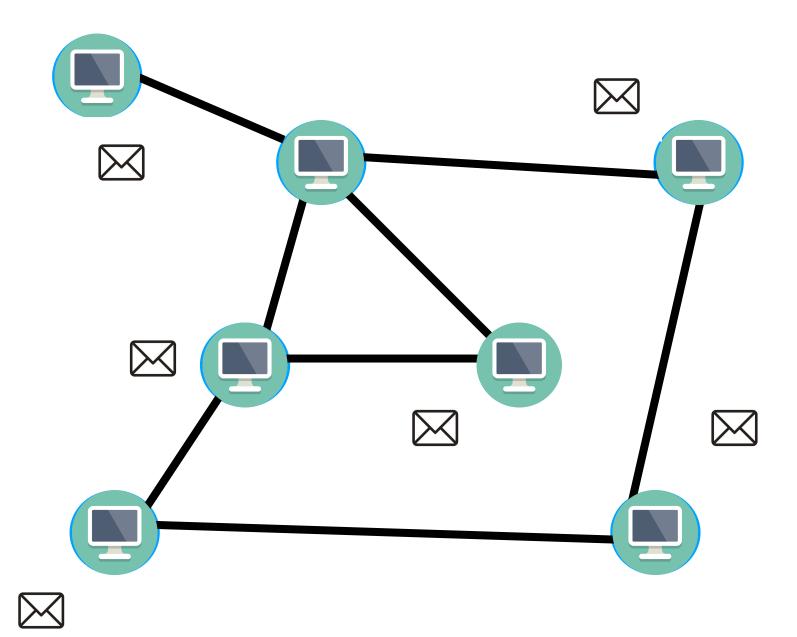
Adsense problem and generalised online matching

Distributed proportional allocation



Distributed load balancing

LOCAL model



Nodes are computers

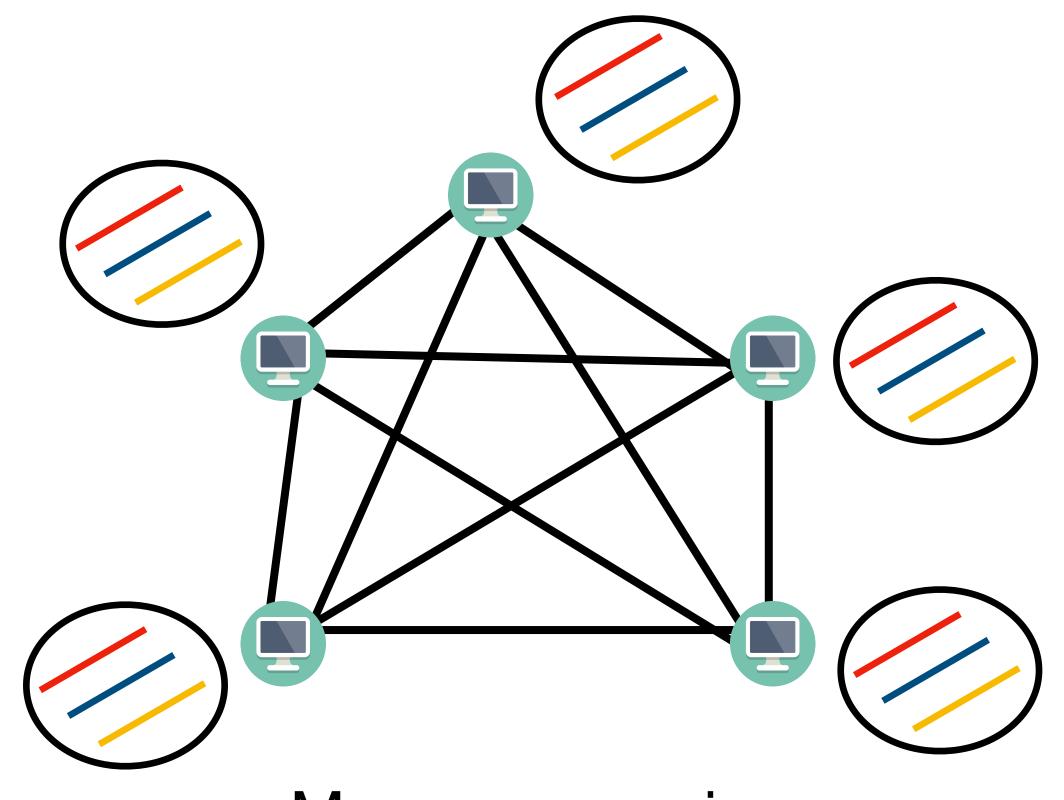
Topology of graph = communication network

Message passing

Synchronous rounds

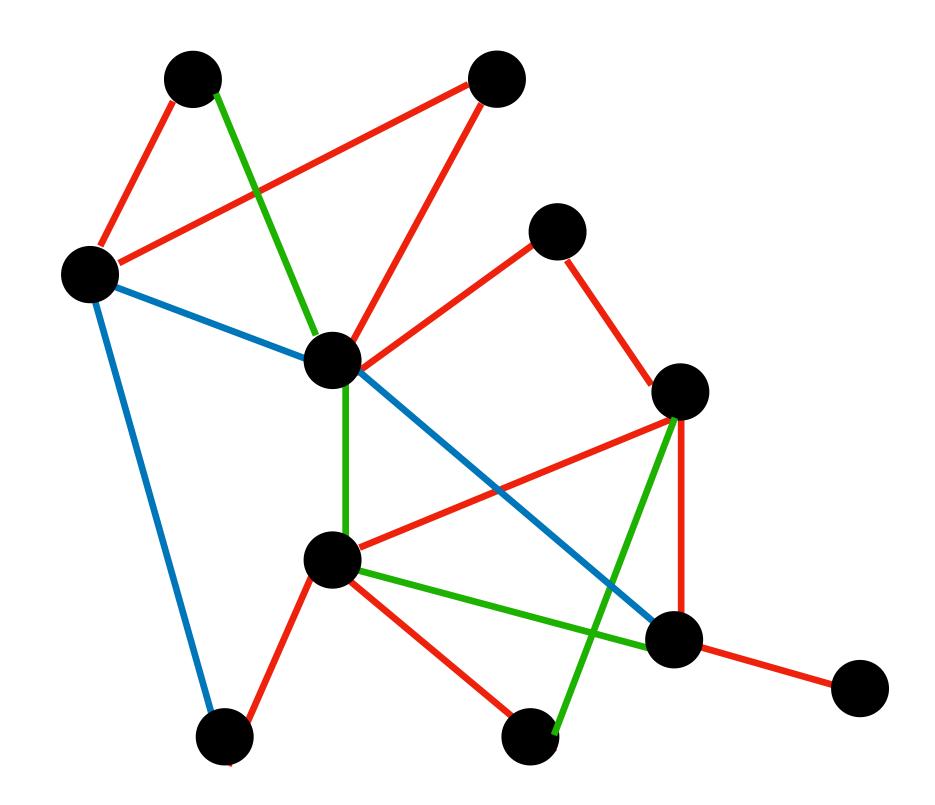
Ideal parameters

sub-linear MPC model



Message passing Communication network is a clique Nodes have limited memory $S=n^\delta$ Synchronous rounds

Arboricity of a graph



Arboricity(
$$G$$
) = λ

- $\Leftrightarrow E(G)$ can be decomposed into λ forests
- \Rightarrow Every vertex induced subgraph has average degree at most 2λ

$$\Rightarrow \Delta_{avg}/2 \le \lambda \le \Delta = \max_{v \in G} \deg(v)$$

Prior Work on Matchings — Distributed and MPC

[Kapralov, Khanna, Sudhan SODA '14]

 $1+\epsilon$ matching in $O_{\epsilon}(\log \Delta)$ LOCAL rounds

[Ghaffari and Uitto, SODA '19]

Maximal matching in $\tilde{O}(\sqrt{\log \Delta})$ sub-linear MPC rounds

[Ghaffari, Grunau, Jin DISC '21] Maximal matching in $\tilde{O}(\sqrt{\log \lambda} + \log \log n)$ sub-linear MPC rounds

[Ghaffari, Grunau, Mitrovic SPAA '22]

 $1+\epsilon$ approximate b-matching in $O(\log\log\Delta_{avg})$ near-linear MPC rounds

Our Results

Q1. Is there an efficient LOCAL algorithm for allocation that runs fast in sparse graphs?

Theorem 1

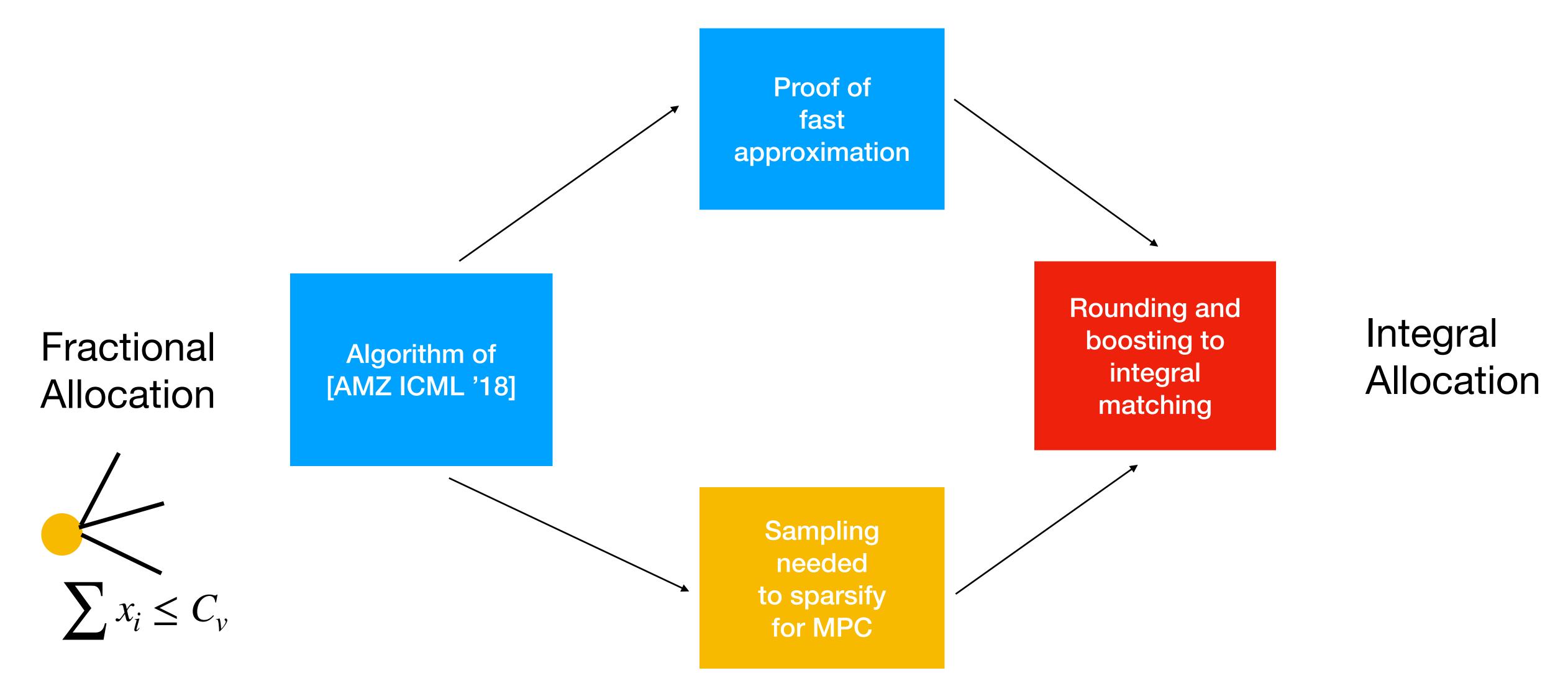
There exists a LOCAL algorithm for allocation that runs in $O_{\epsilon}(\log \lambda)$ rounds

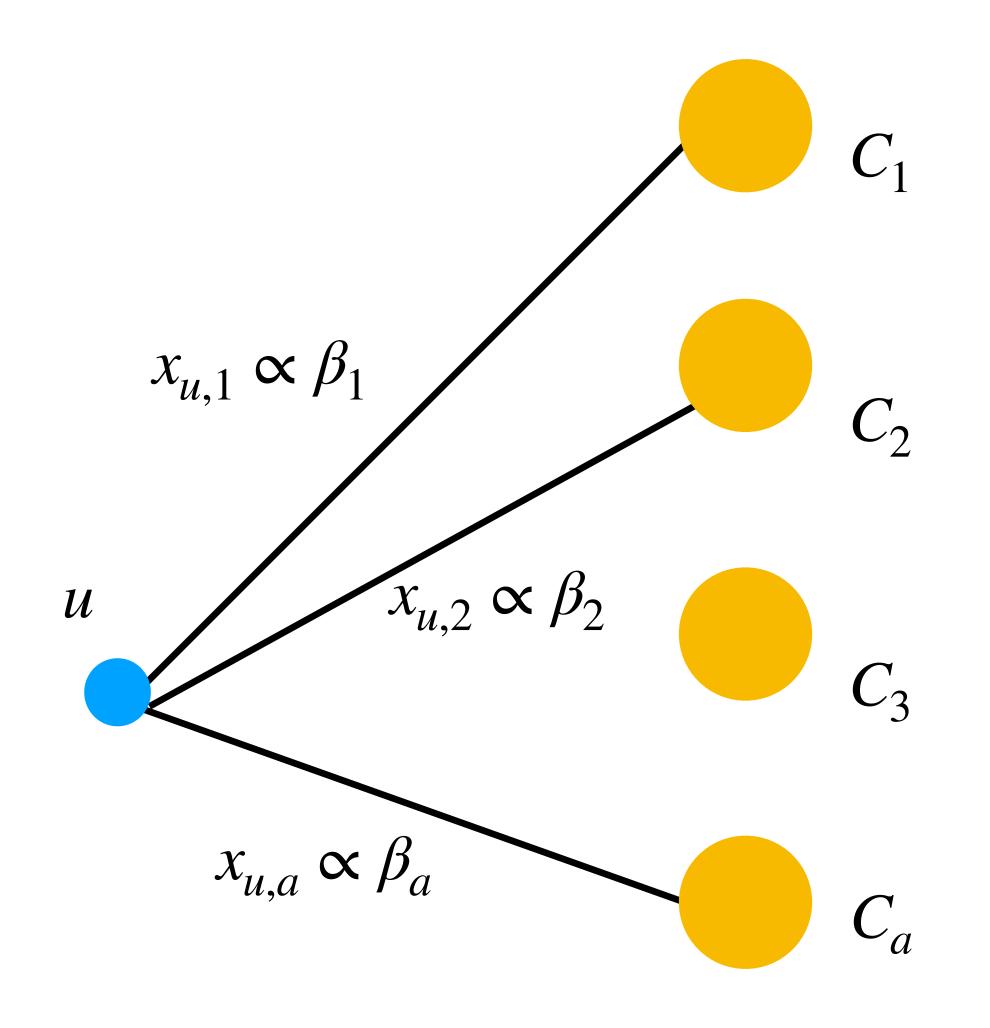
Q2. Can such algorithms be implemented efficiently in sub-linear MPC?

Theorem 2

The allocation algorithm can be implemented in $\tilde{O}_{\epsilon}(\sqrt{\log \lambda})$ sub-linear MPC rounds

Overall pipeline





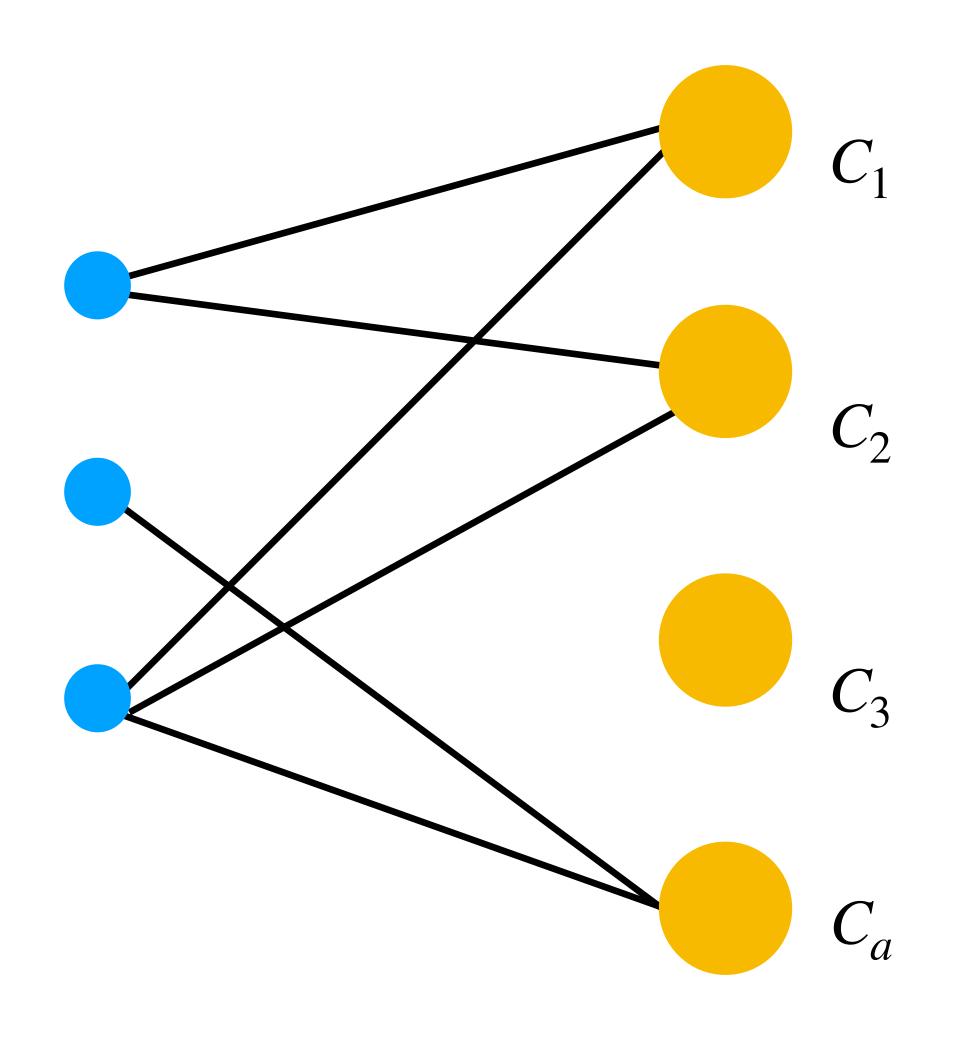
There exists a global "preference" for the advertisers

 $\beta_v \in (0,\infty)$ for each advertiser v such that assigning $x_{u,v} \propto \beta_v$

gives a $1+\epsilon$ approximate matching

$$x_{u,v} = \frac{\beta_{v}}{\sum_{(u,v') \text{exists}}}$$

n Users



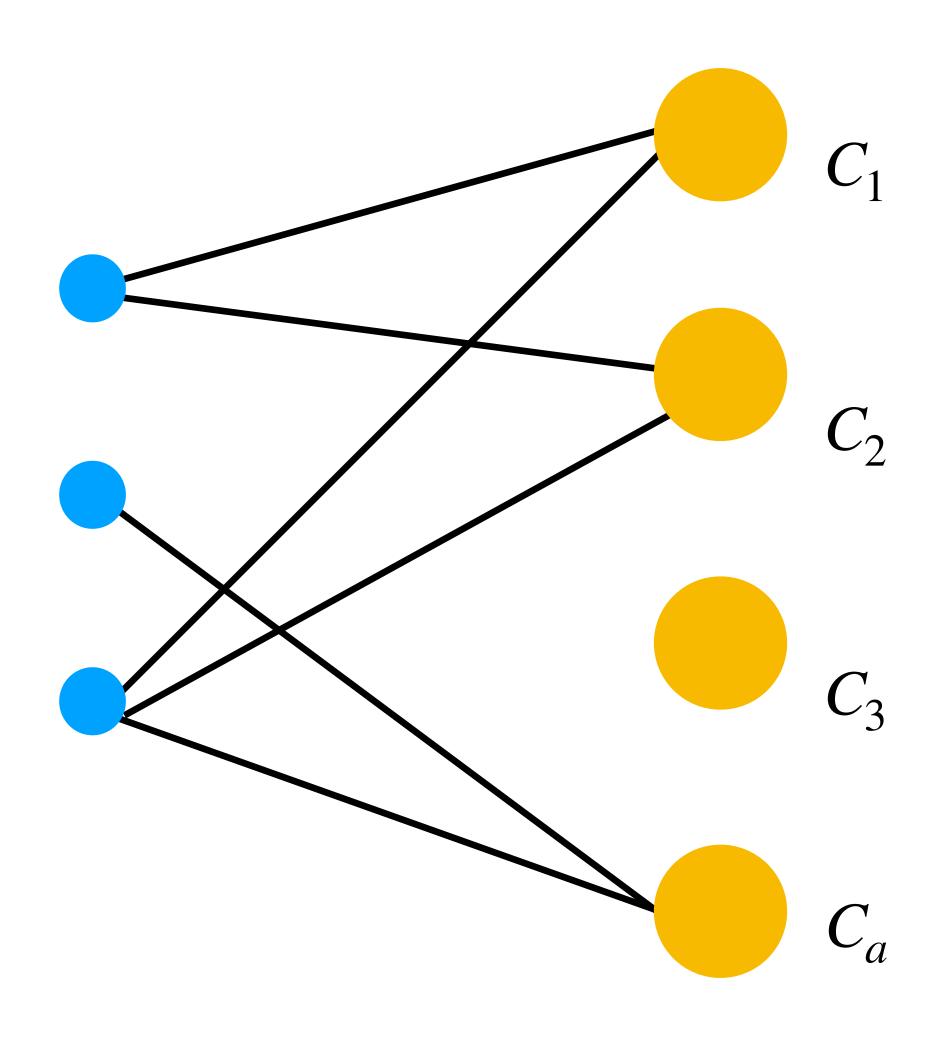
There exists a global "preference" for the advertisers

 $\beta_v \in (0,\infty)$ for each advertiser v such that assigning $x_{u,v} \propto \beta_v$

gives a $1+\epsilon$ approximate matching

$$x_{u,v} = \frac{\beta_{v}}{\sum_{(u,v') \text{exists}}}$$

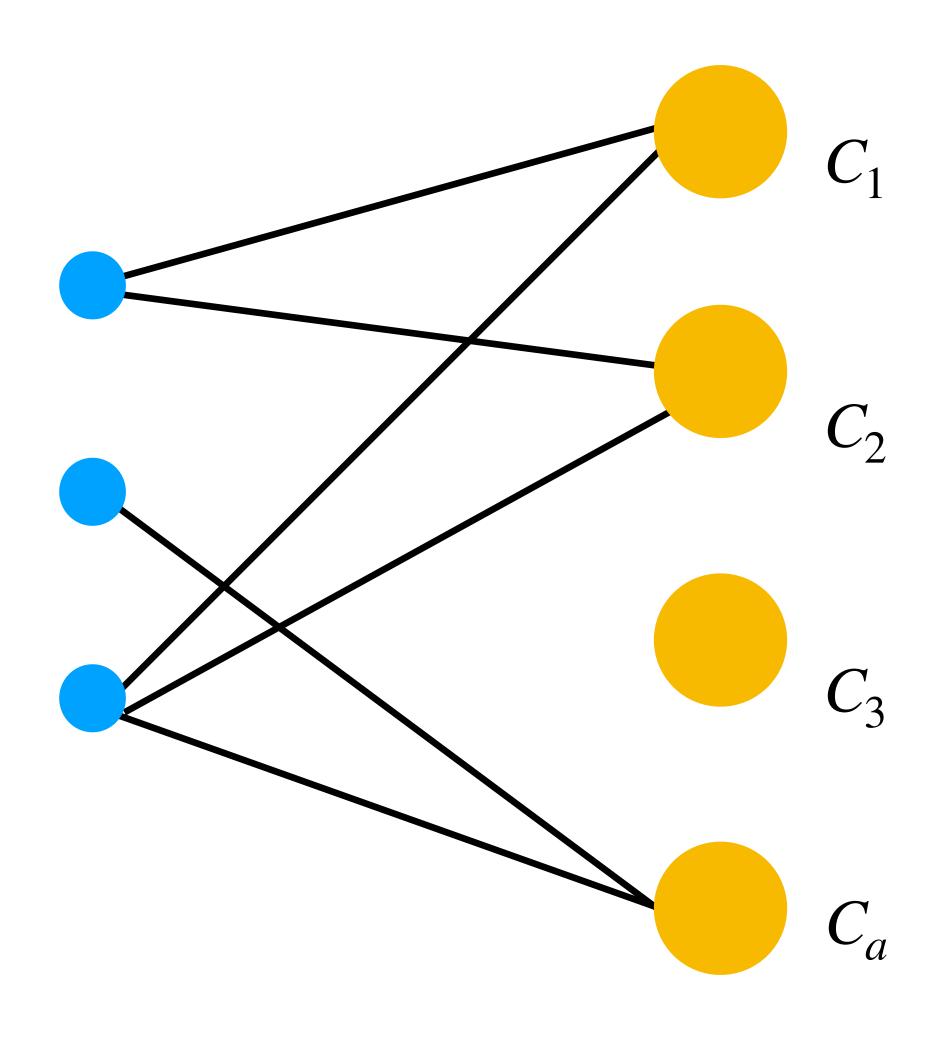
n Users



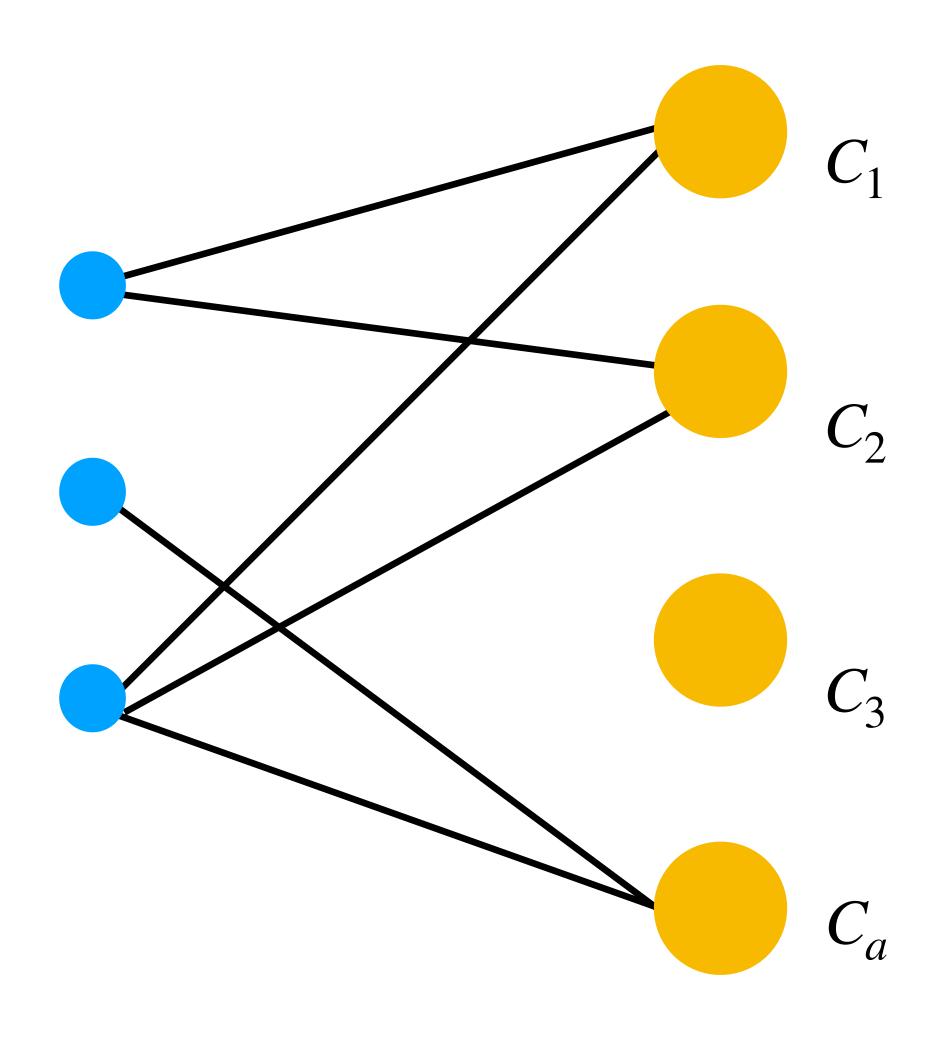
Users

a Advertisers

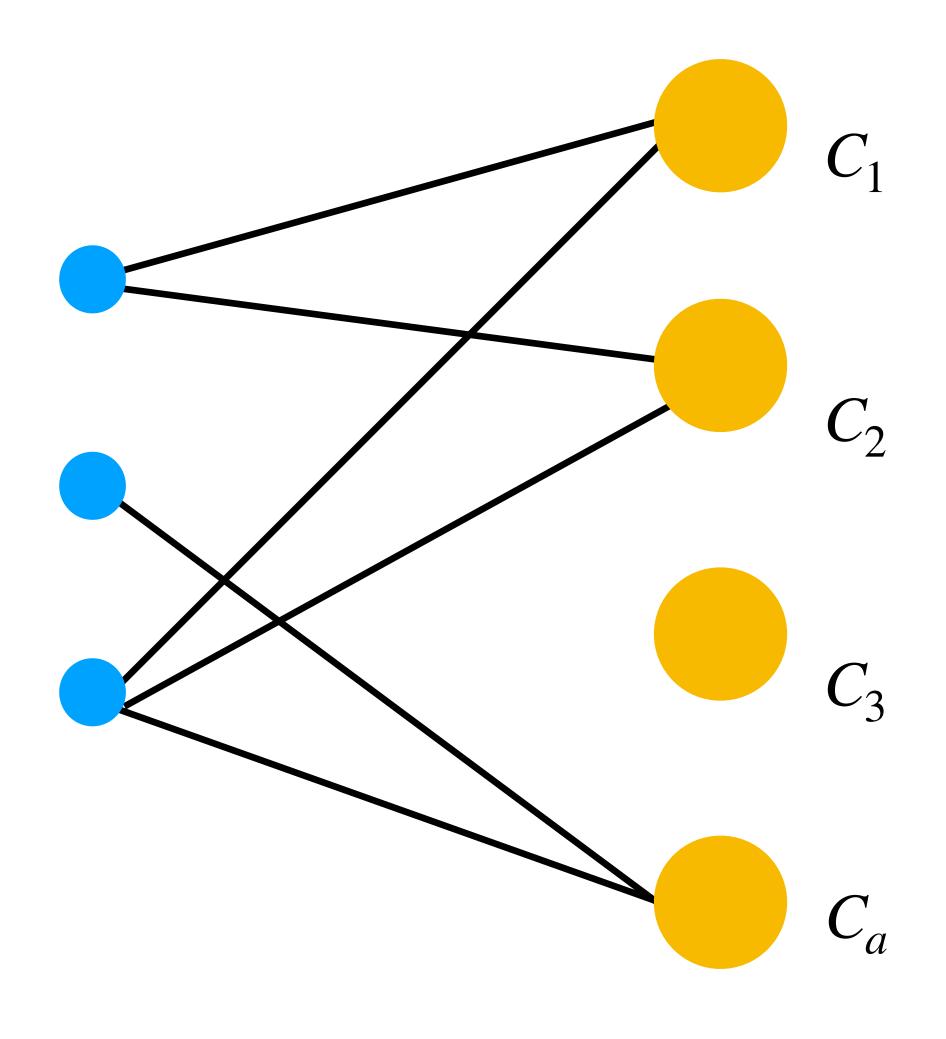
 \rightarrow Start with $\beta_{v} = 1 \ \forall v$



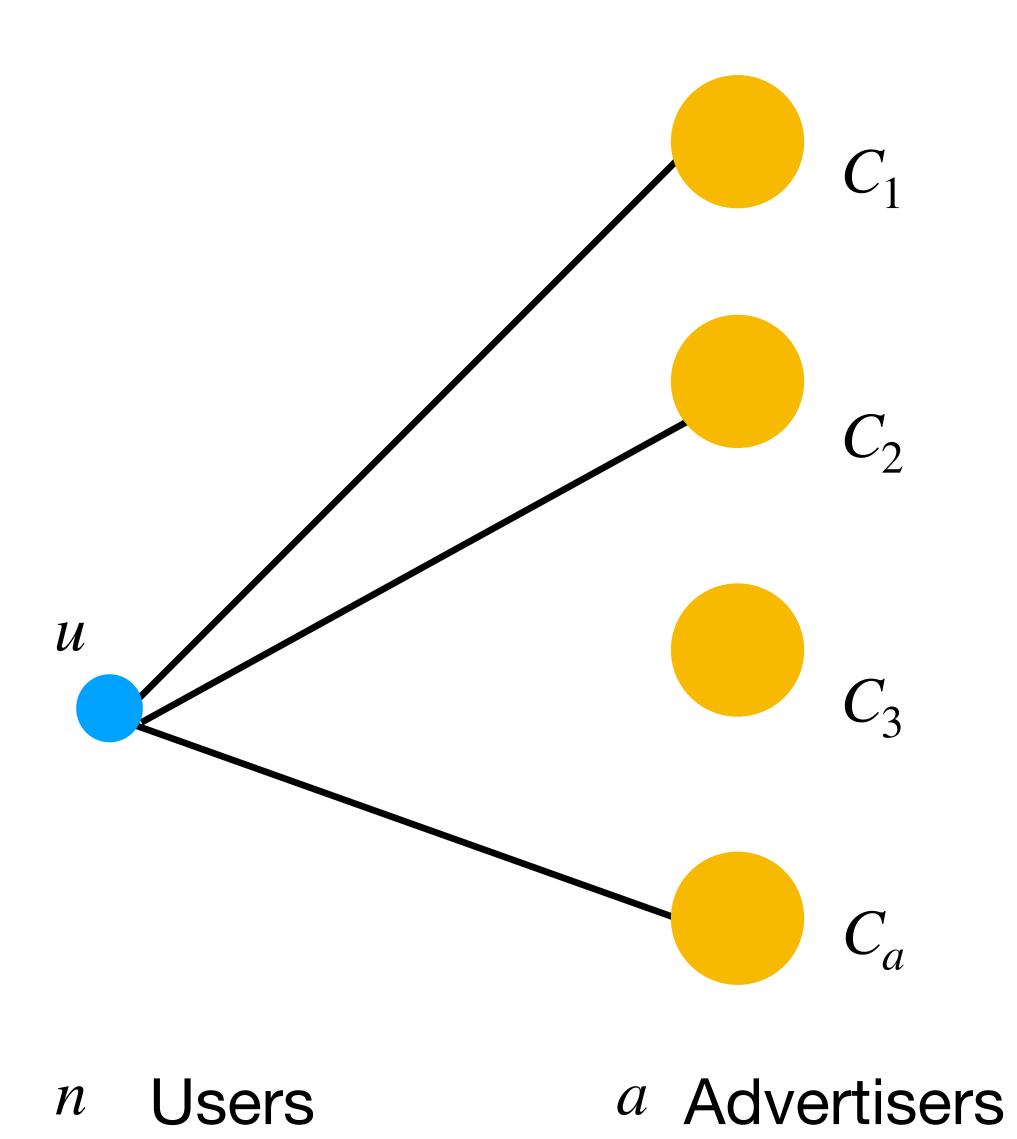
- \rightarrow Start with $\beta_v = 1 \ \forall v$
- Check how it does locally



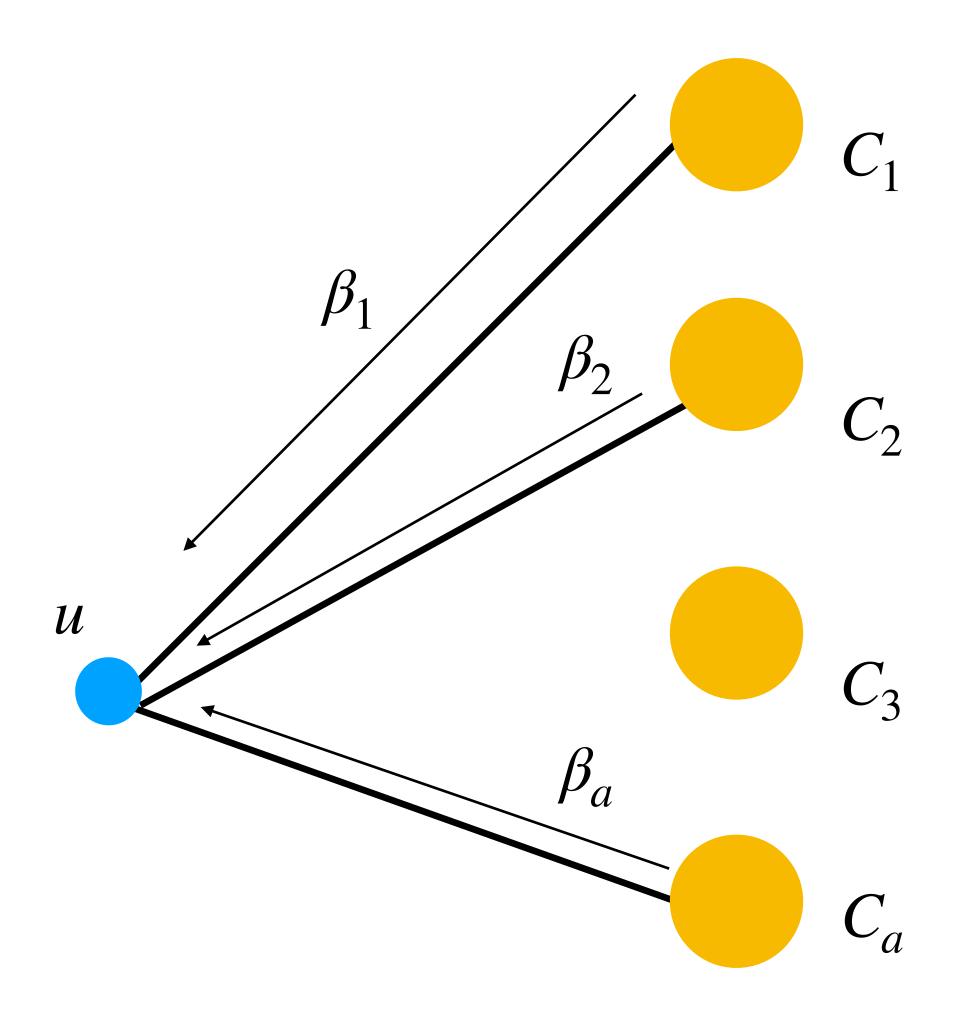
- \rightarrow Start with $\beta_v = 1 \ \forall v$
- Check how it does locally
- \rightarrow Change β_v by $1 + \epsilon$ factor



- \rightarrow Start with $\beta_v = 1 \ \forall v$
- Check how it does locally
- \rightarrow Change β_{v} by $1 + \epsilon$ factor
- Repeat T times



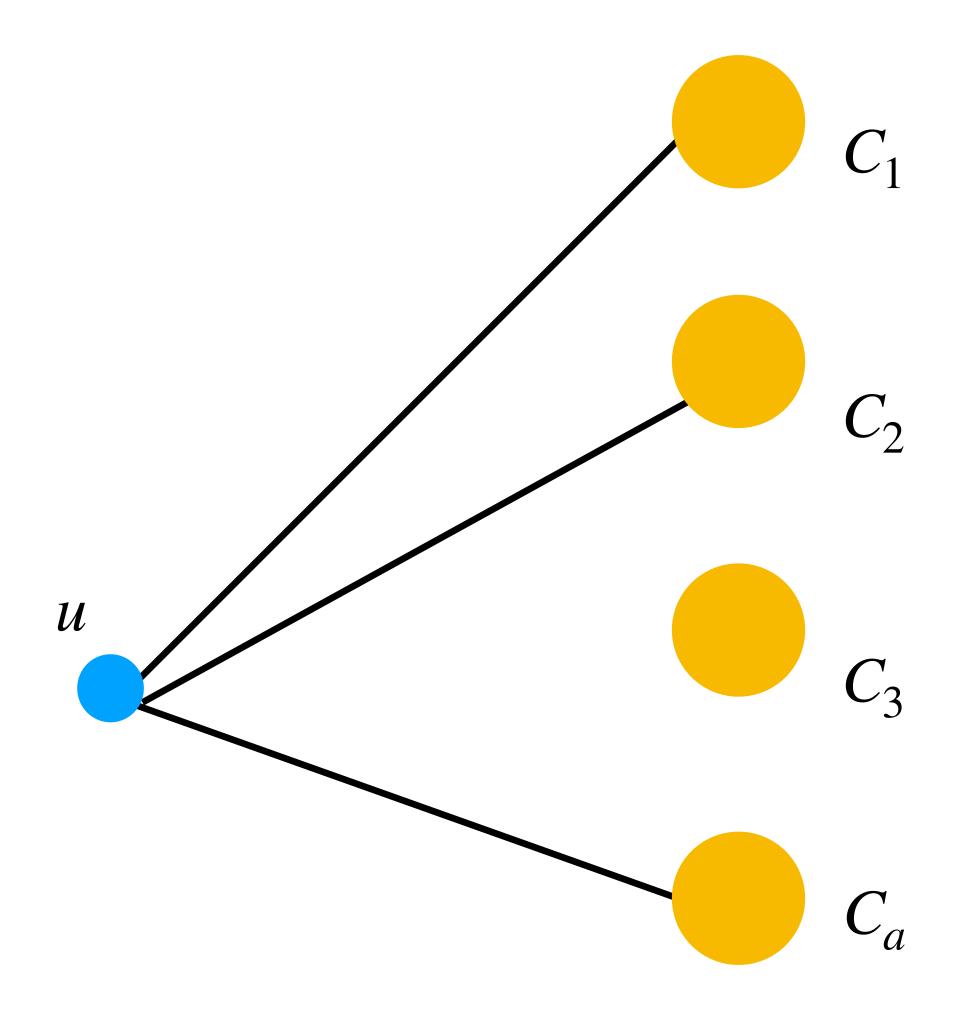
User Round



User Round

 \rightarrow Each user u gets current β_v from neighbours

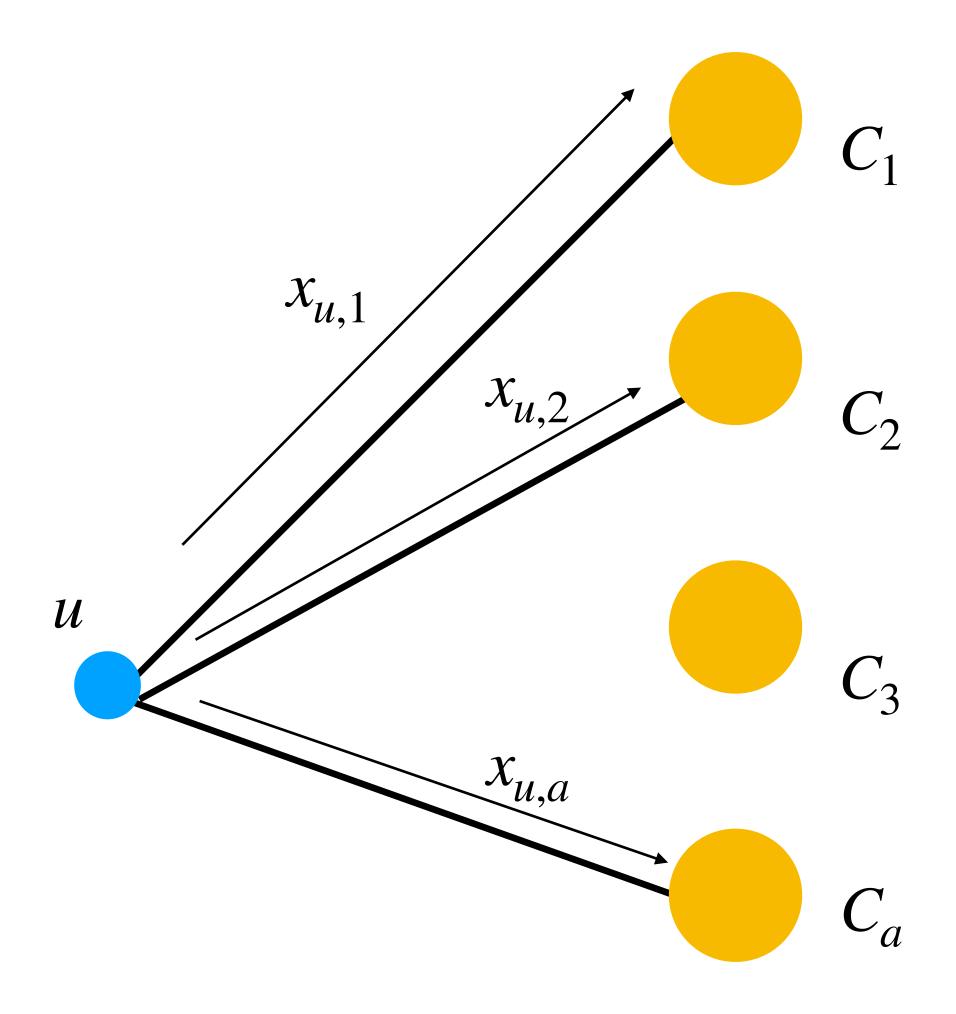
n Users



User Round

ightharpoonup Each user u gets current β_v from neighbours

$$\rightarrow \text{ Compute } x_{u,v} = \frac{\beta_v}{\sum \beta_{v'}}$$



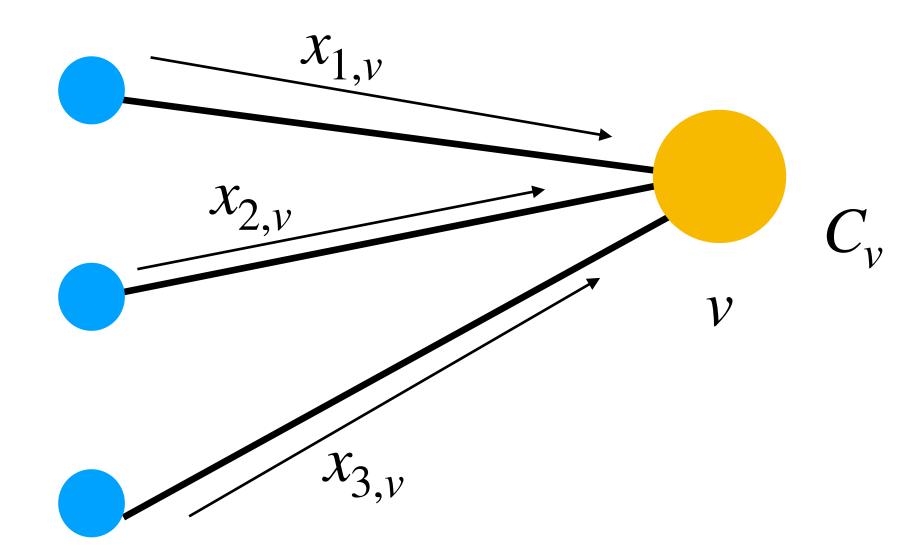
User Round

 \rightarrow Each user u gets current β_v from neighbours

$$\rightarrow \text{ Compute } x_{u,v} = \frac{\beta_v}{\sum \beta_{v'}}$$

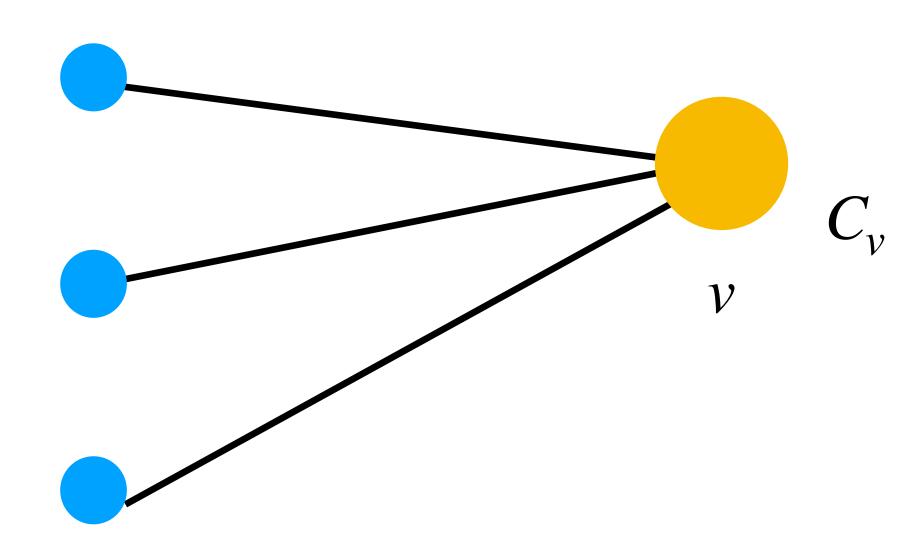
Send $x_{u,v}$ to v

Users



Advertiser Round

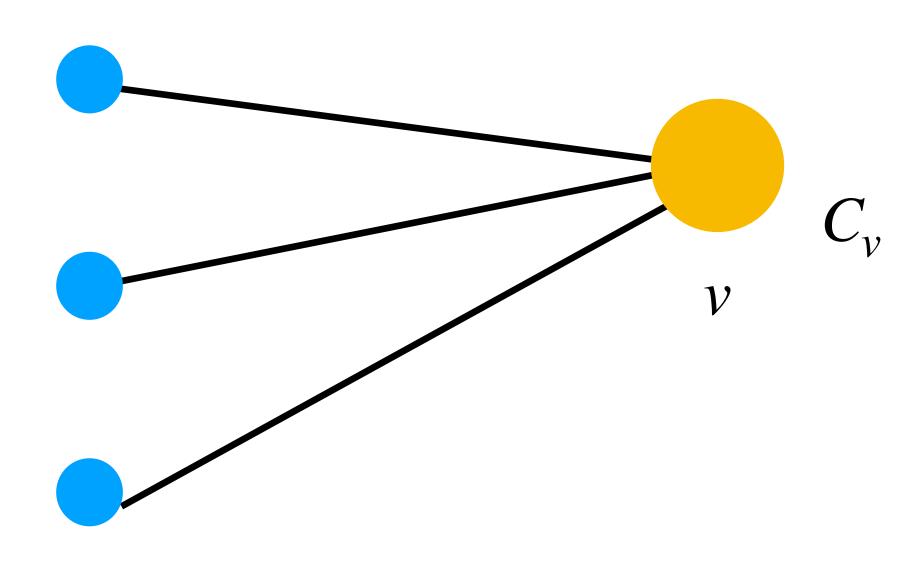
 \rightarrow Receive $x_{u,v}$



Advertiser Round

 \rightarrow Receive $x_{u,v}$

 \rightarrow Compute alloc_v = $\sum x_{u,v}$



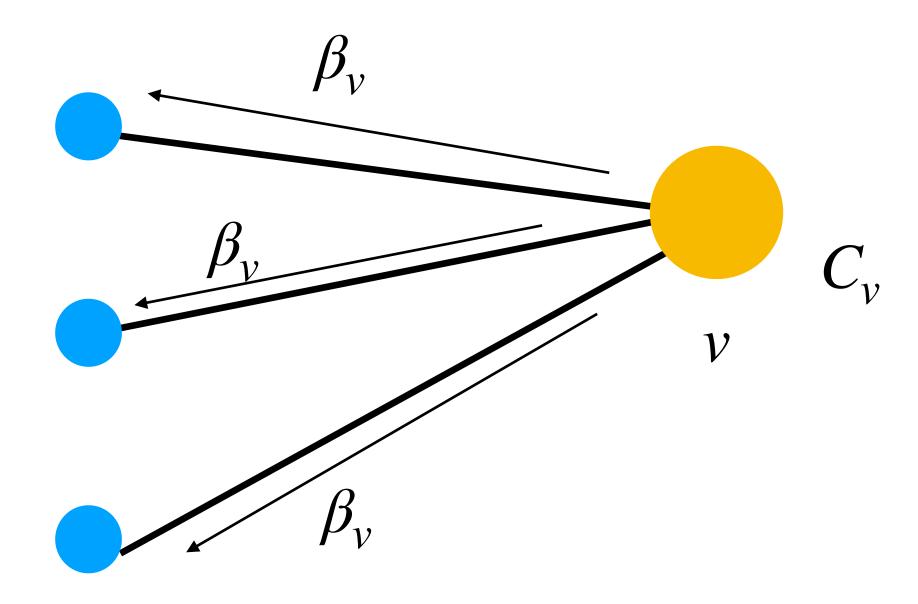
Advertiser Round

- \rightarrow Receive $x_{u,v}$
- \rightarrow Compute alloc_v = $\sum x_{u,v}$
- \rightarrow if alloc_v < $C_v/(1 + \epsilon)$

increase β_v by $1 + \epsilon$ factor

else if alloc_v > $C_v(1 + \epsilon)$

decrease β_v by $1 + \epsilon$ factor



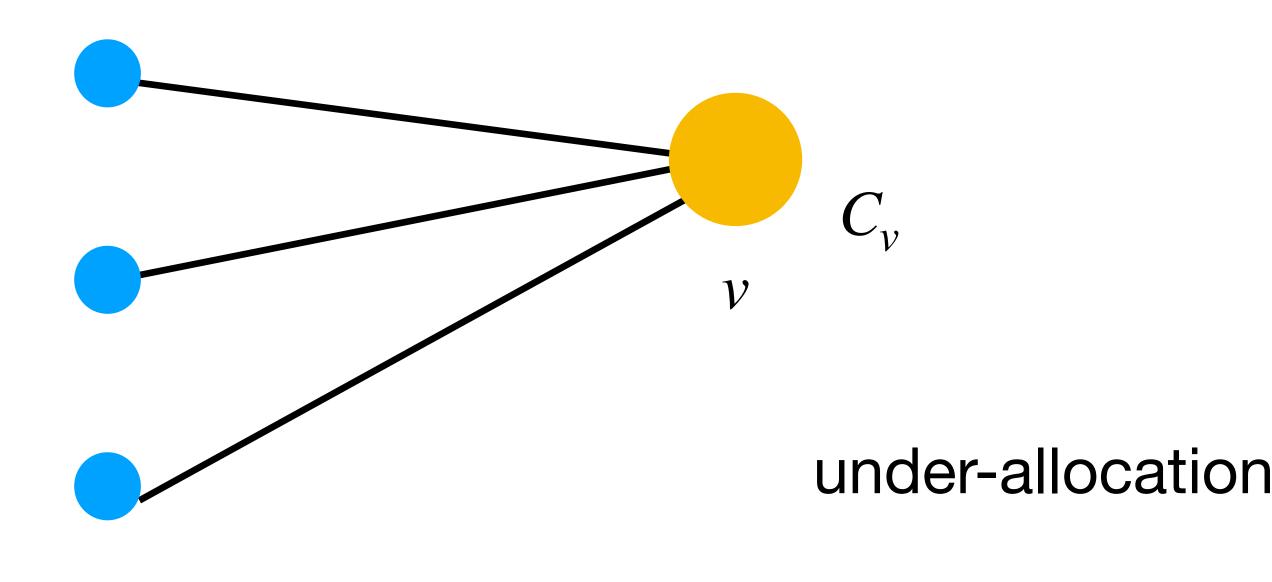
Advertiser Round

- \rightarrow Receive $x_{u,v}$
- \rightarrow Compute alloc_v = $\sum x_{u,v}$
- if $\operatorname{alloc}_v < C_v/(1+\epsilon)$ increase β_v by $1+\epsilon$ factor else if $\operatorname{alloc}_v > C_v(1+\epsilon)$

decrease β_v by $1 + \epsilon$ factor

 \rightarrow Send β_{v}

Advertiser Round



Receive $x_{u,v}$

Compute alloc_v =
$$\sum x_{u,v}$$

if alloc_v < $C_v/(1 + \epsilon)$

increase β_v by $1 + \epsilon$ factor

else if alloc_v > $C_v(1 + \epsilon)$ over-allocation

decrease β_v by $1 + \epsilon$ factor

a Advertisers

Users

Send β_{v}

User Round

- $\rightarrow \begin{array}{c} \text{Each user } u \text{ gets current } \beta_v \\ \text{from neighbours} \end{array}$
- $\rightarrow \text{Compute } x_{u,v} = \frac{\beta_v}{\sum \beta_{v'}}$
- \rightarrow Send $x_{u,v}$ to v

Advertiser Round

- \rightarrow Receive $x_{u,v}$
- \rightarrow Compute alloc_v = $\sum x_{u,v}$
- $\rightarrow \quad \text{if alloc}_{v} < C_{v}/(1+\epsilon)$

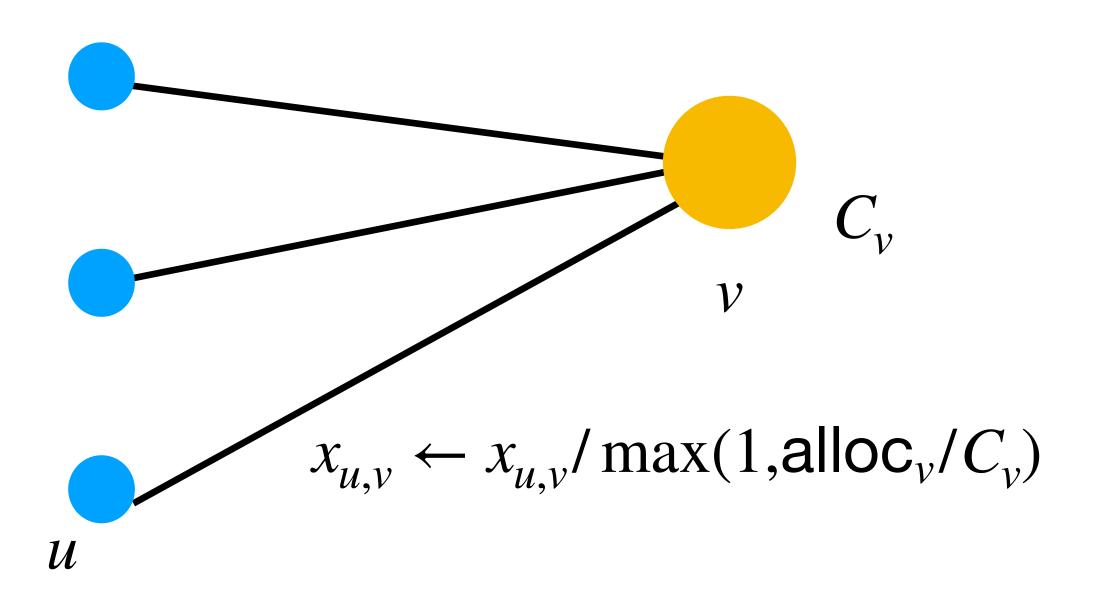
increase β_v by $1 + \epsilon$ factor

else if alloc_v > $C_v(1 + \epsilon)$

decrease β_{v} by $1 + \epsilon$ factor

 \rightarrow Send β_v

Last Round



If alloc_{$$v$$} > C_v

Rescale $x_{u,v}$ so that alloc_v = C_v

Feasible matching guaranteed

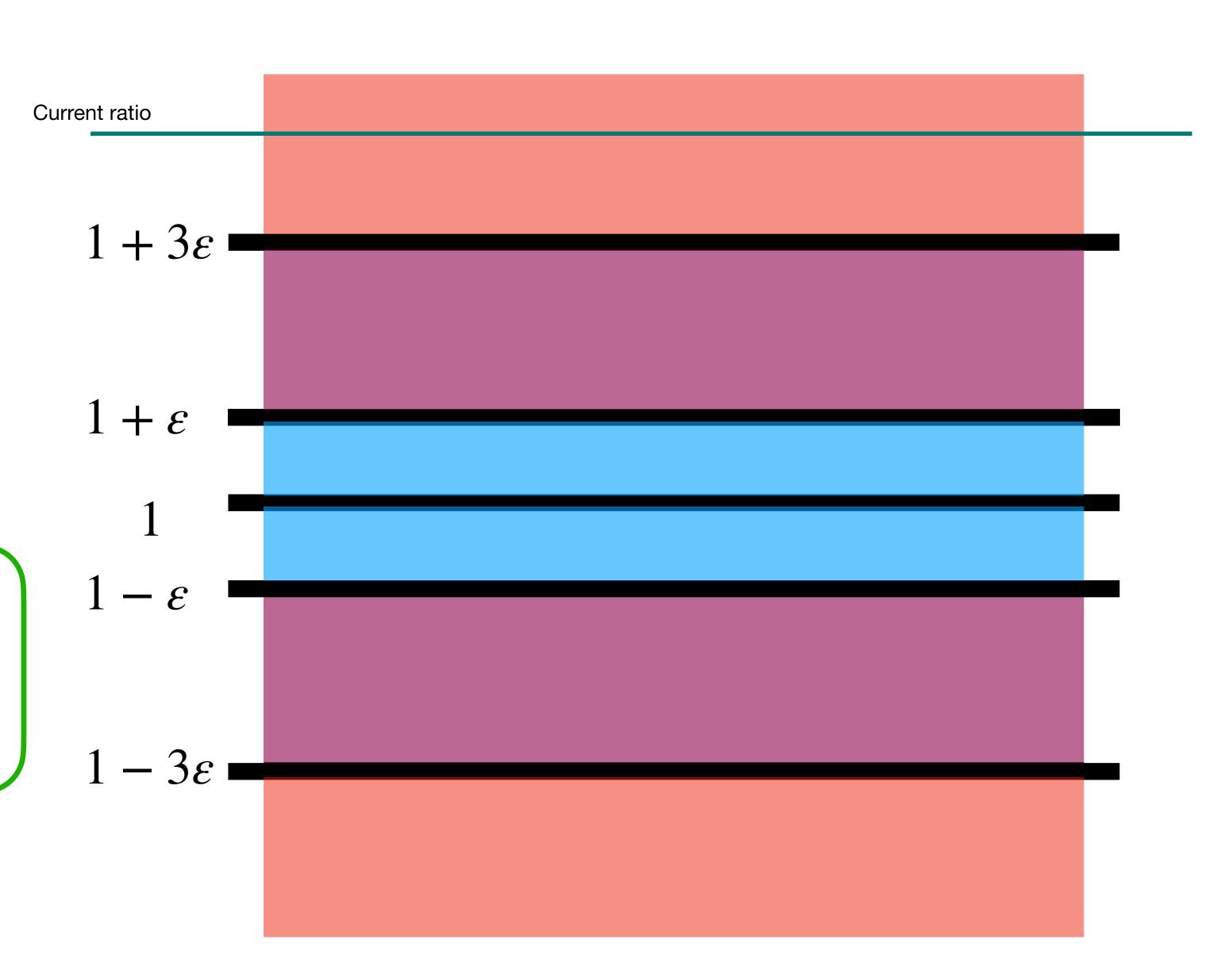
n Users

Study Allocation / Capacity ratio

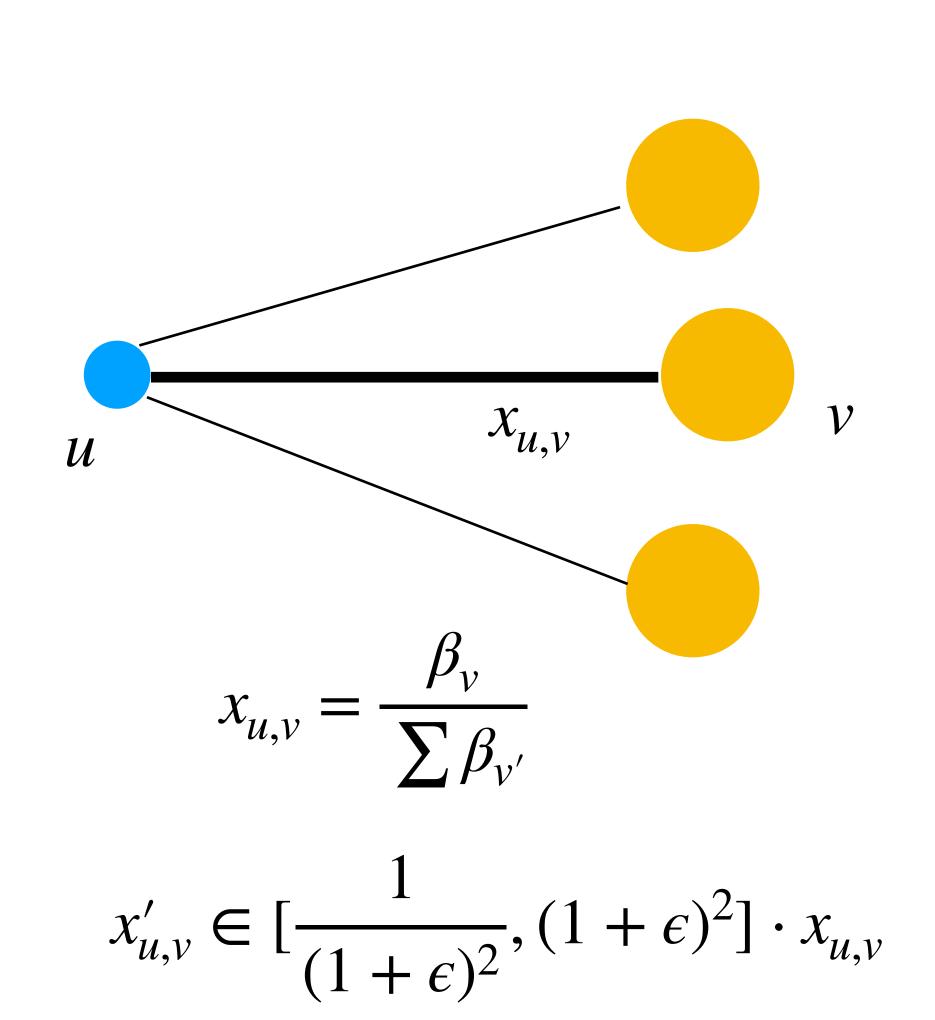
Proof of approximation

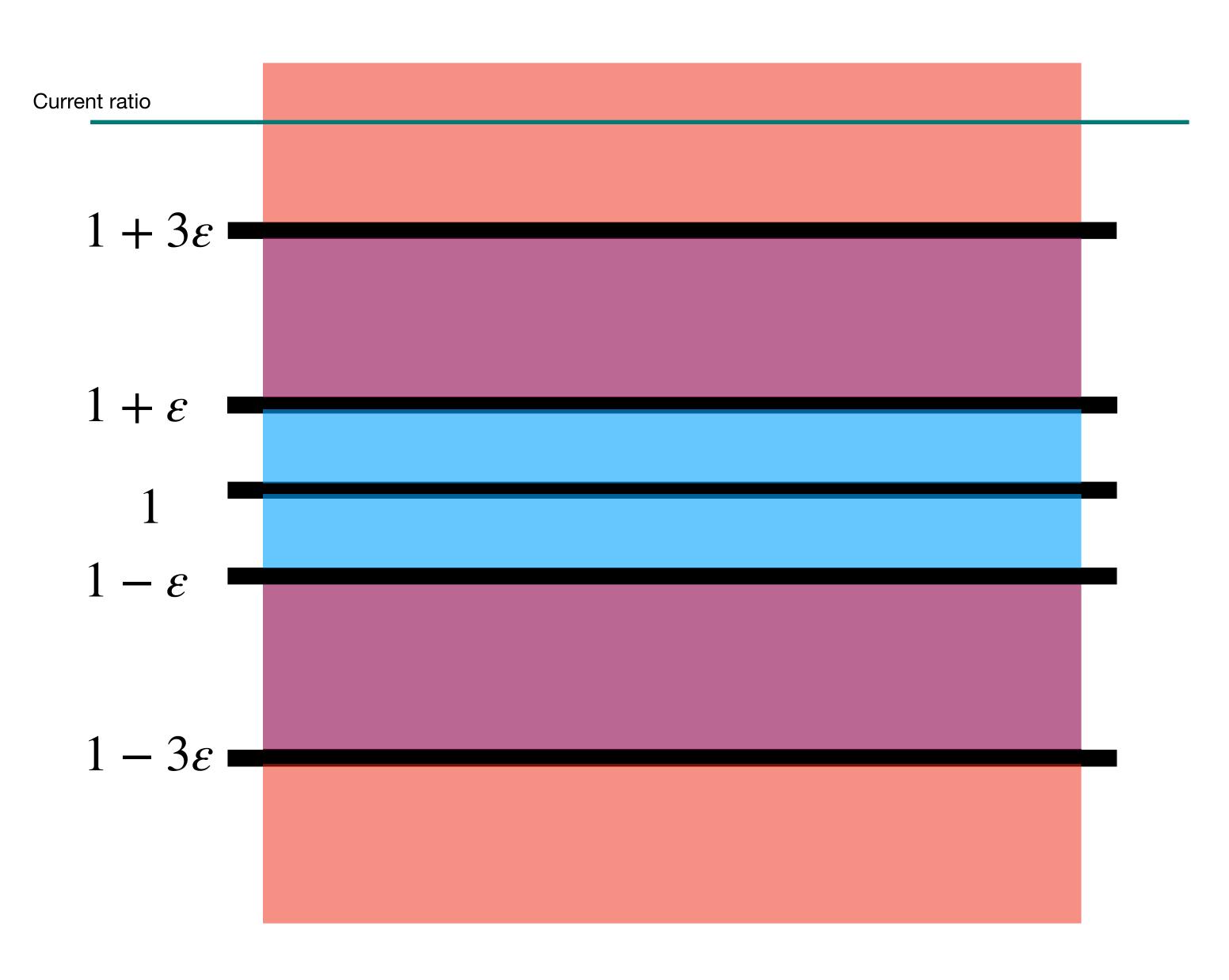
How does over/under allocation for a fixed advertiser change with time?

Claim $\beta_{v}, x_{u,v}, \text{alloc}_{v}/C_{v} \text{ change by } \\ 1 + O(\epsilon) \text{ factor each round }$



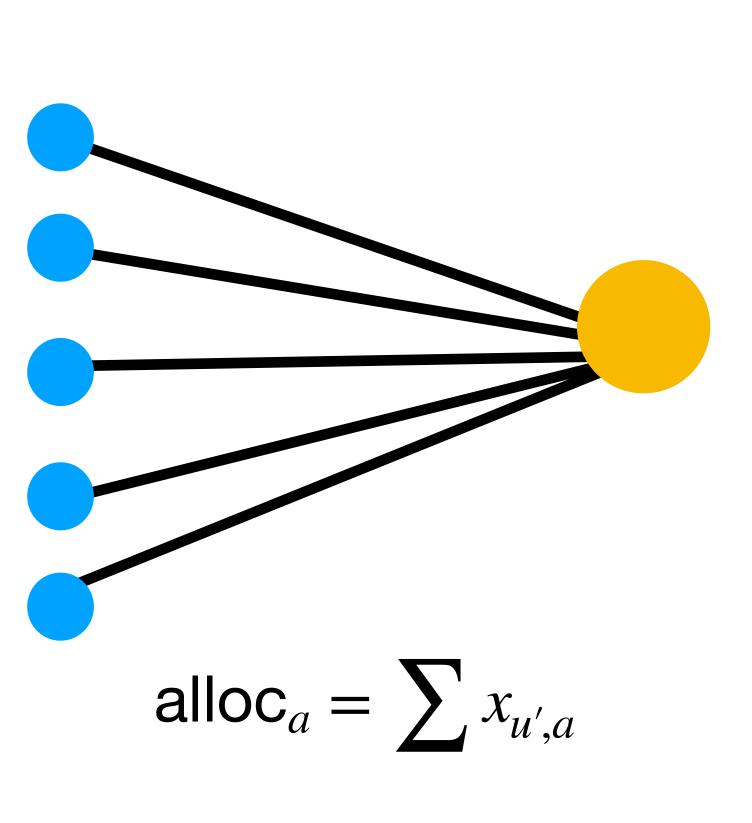
Study Allocation / Capacity ratio



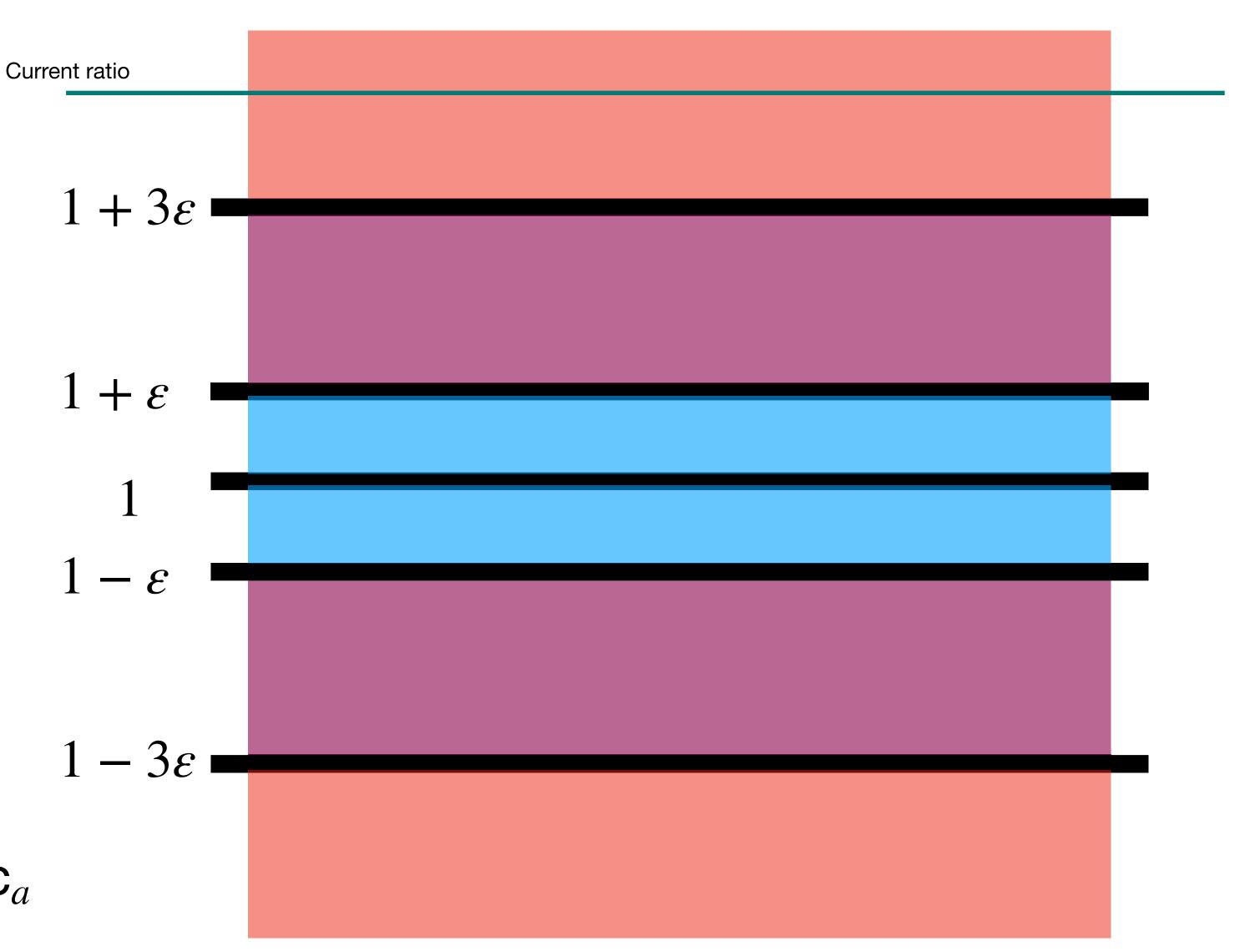


Study Allocation / Capacity ratio

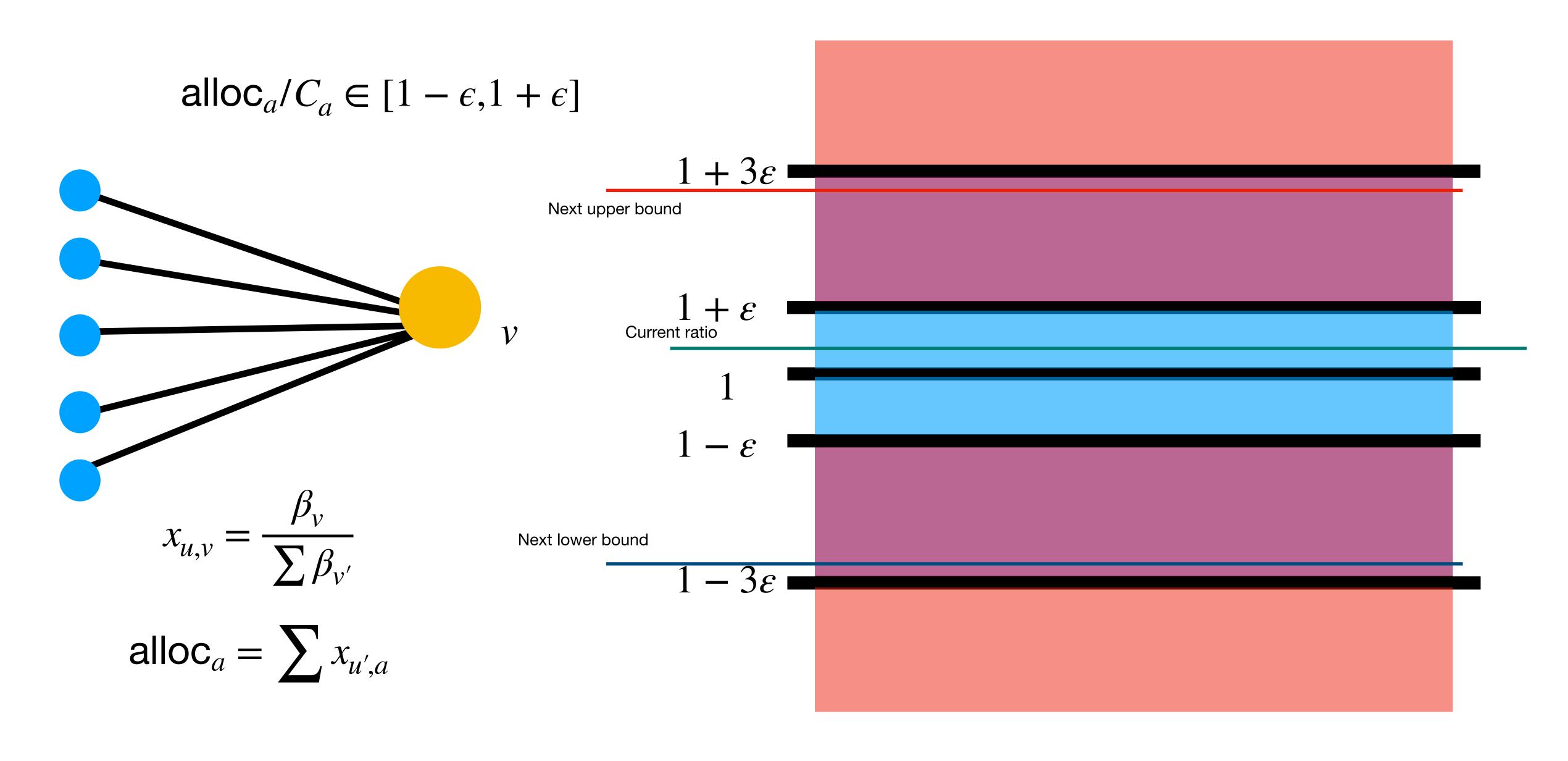
Proof of approximation



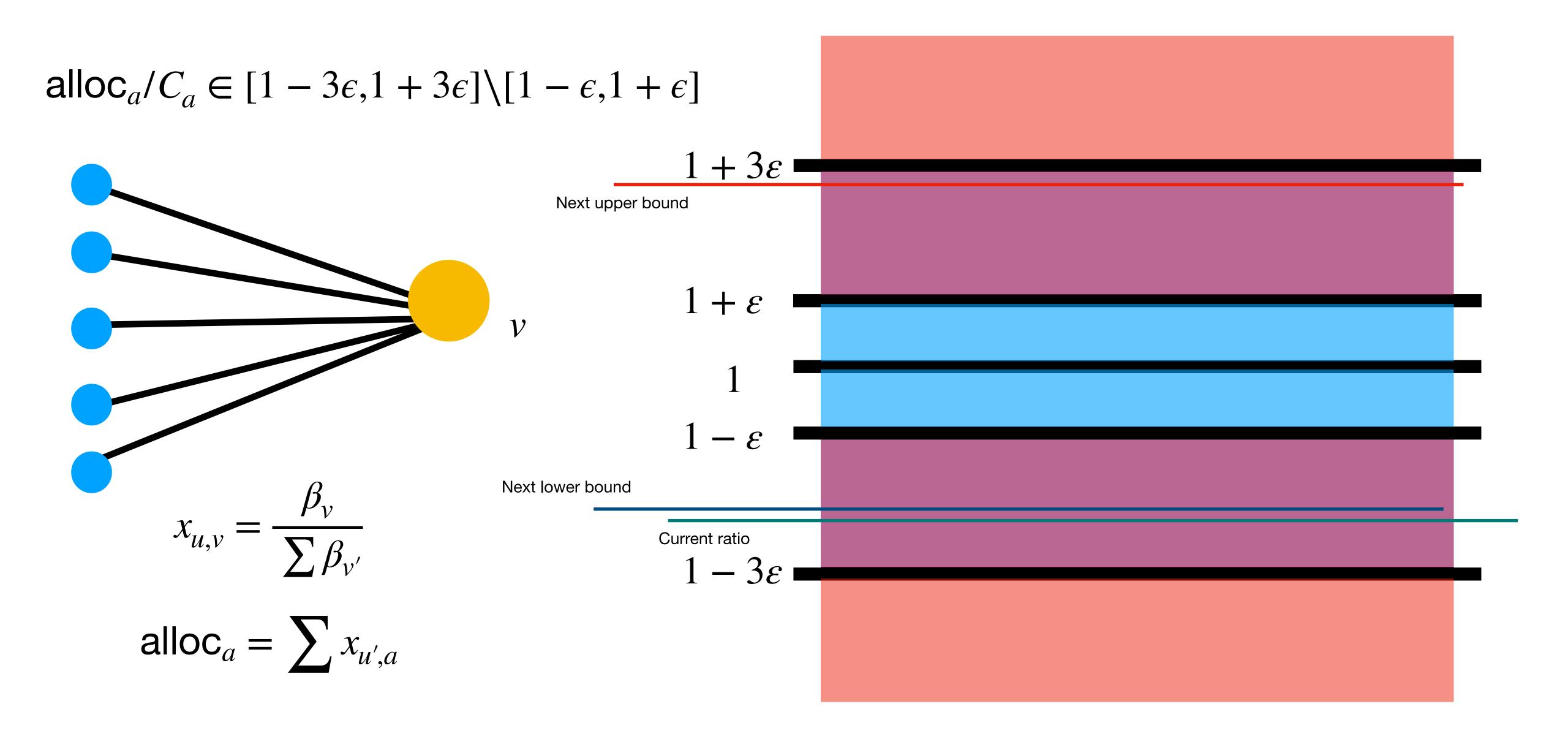
$$\mathsf{alloc}_a^{new} \in \left[\frac{1}{(1+\epsilon)^2}, (1+\epsilon)^2\right] \cdot \mathsf{alloc}_a$$



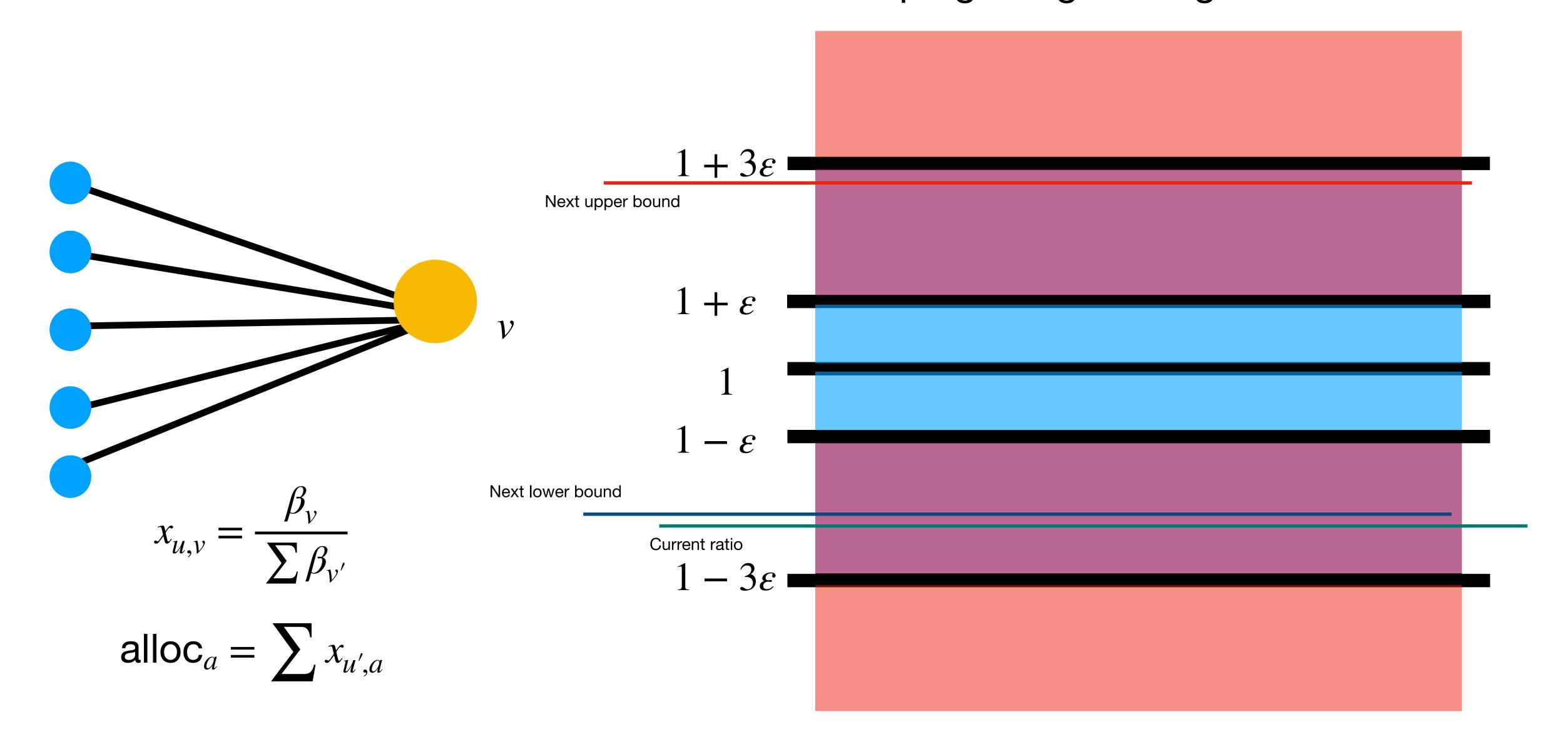
Case 1: Blue region



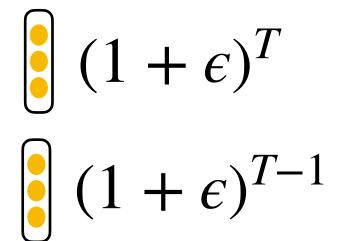
Case 2: Purple region



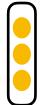
Case 2: Purple region No escaping the good region!



Partition the advertisers according to their final priority values



$$(1+\epsilon)^{T-1}$$



$$(1 + \epsilon)$$

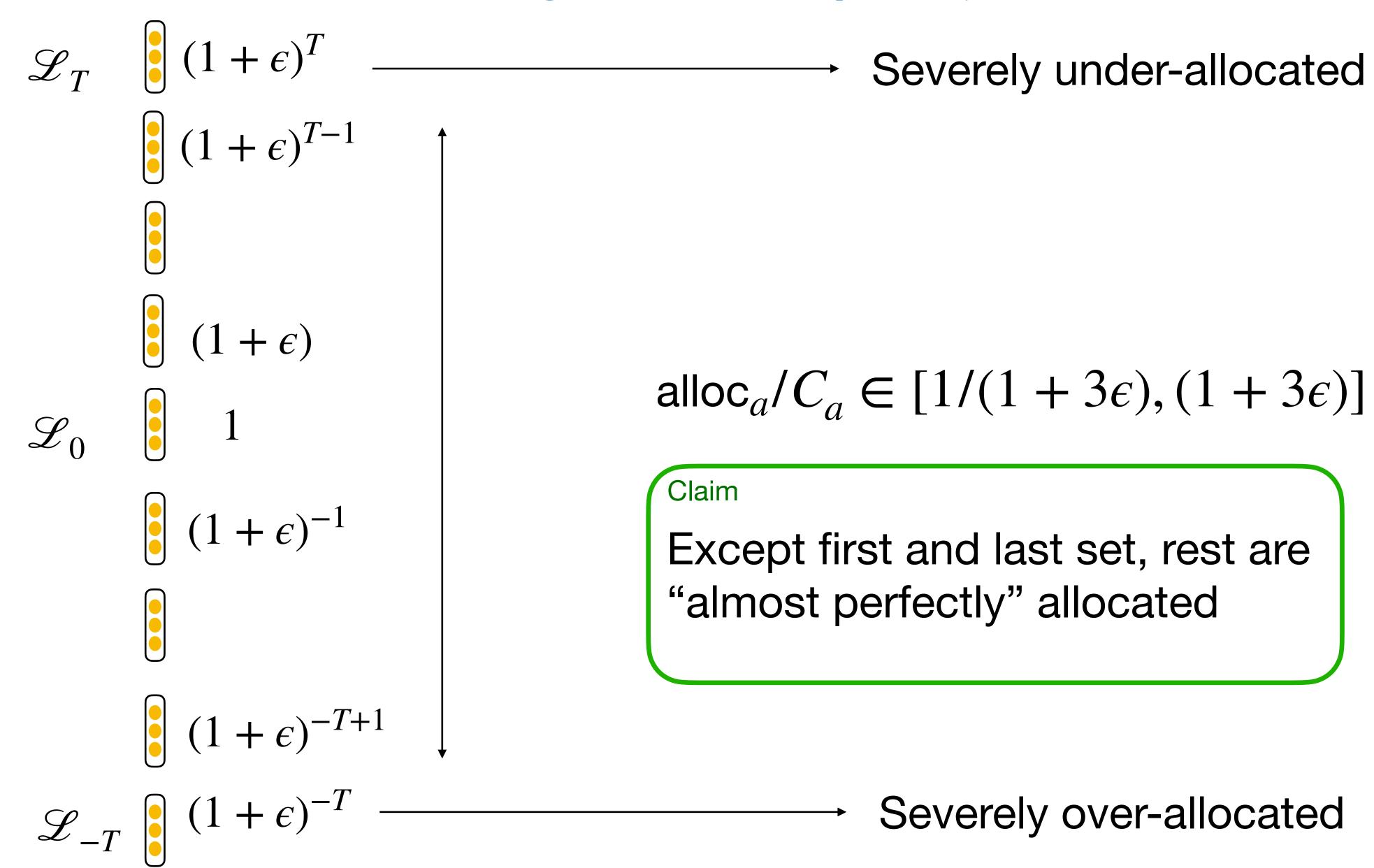
$$(1+\epsilon)^{-1}$$

$$(1 + \epsilon)^{-T+1}$$

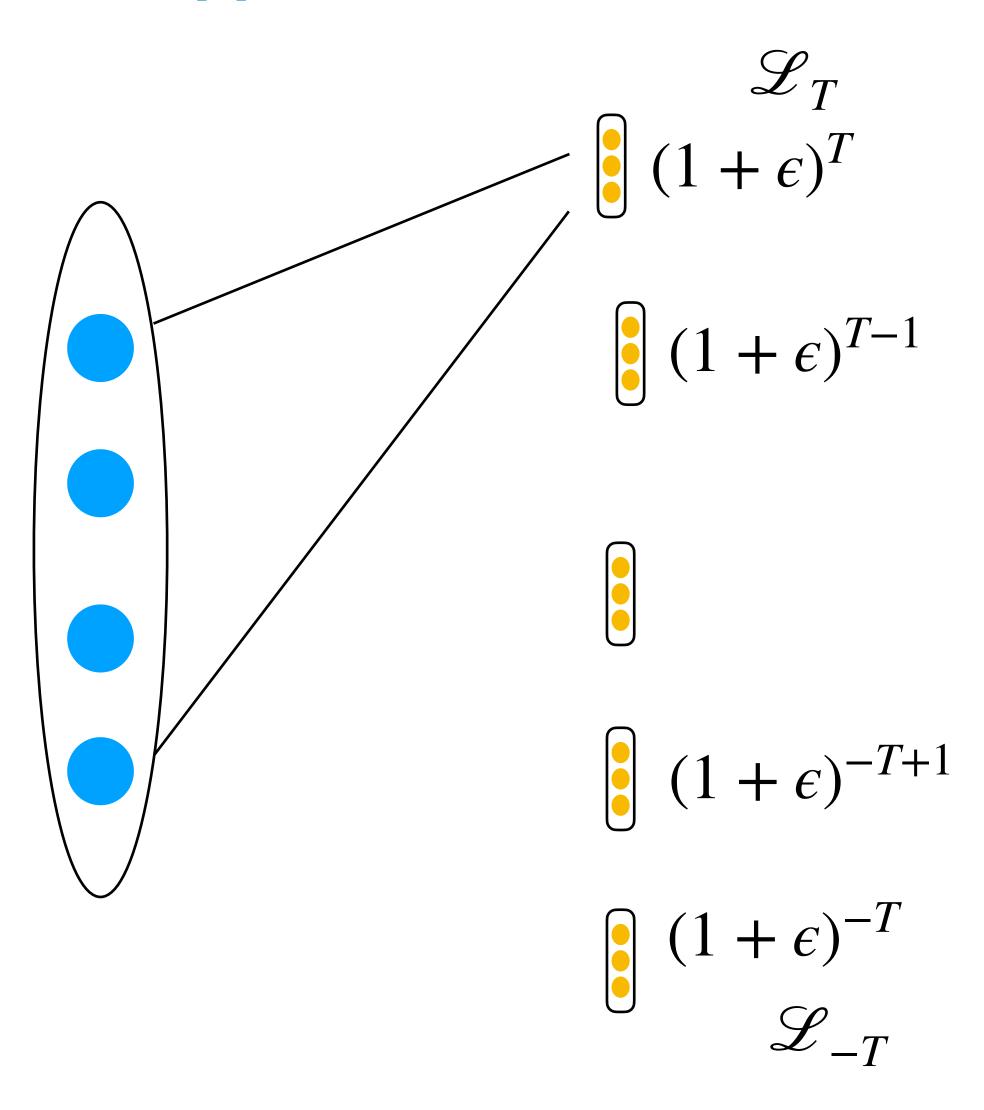
$$(1 + \epsilon)^{-T}$$

$$(1+\epsilon)^{-7}$$

Partition the advertisers according to their final priority values

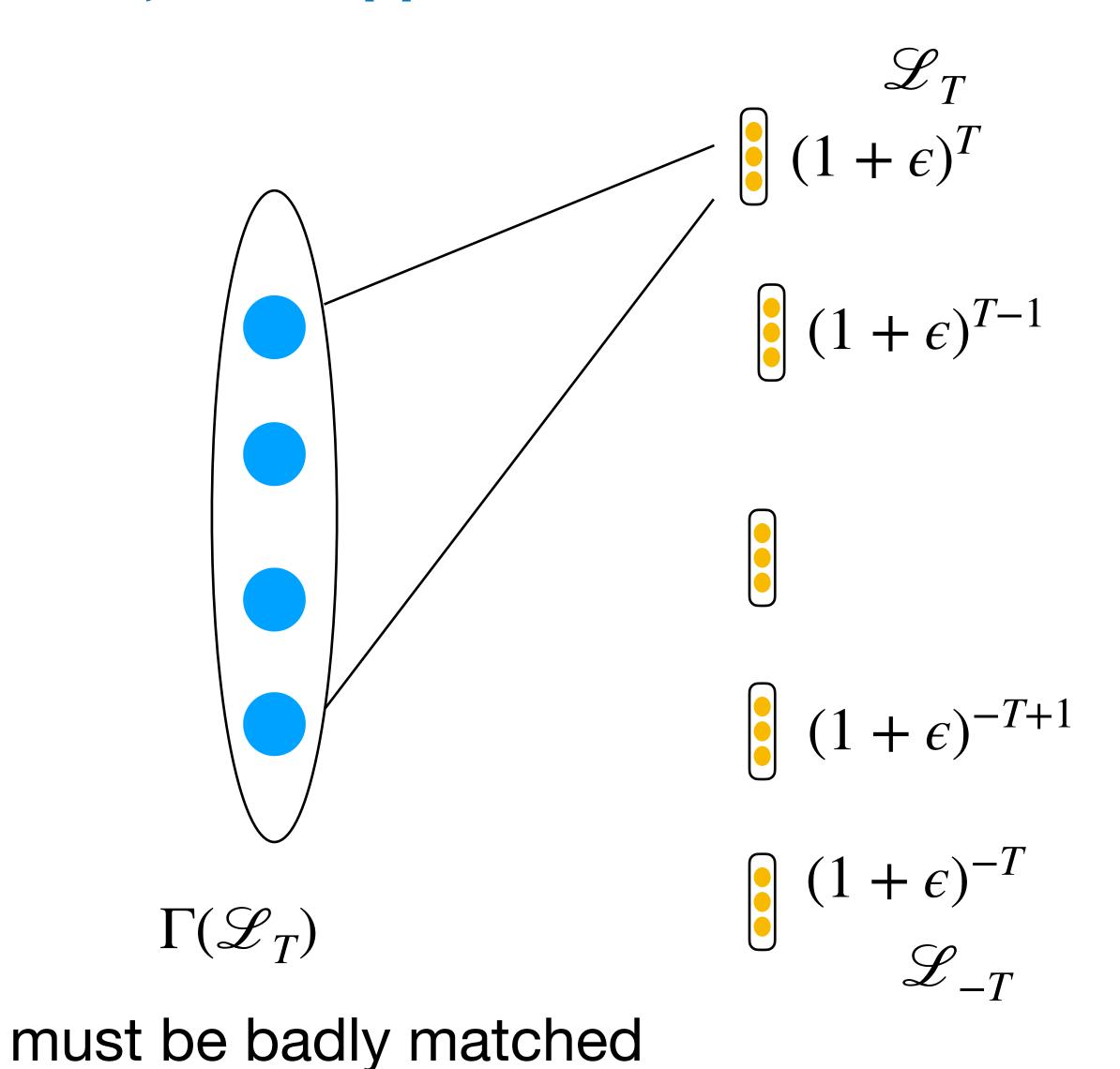


Analysis of approximation

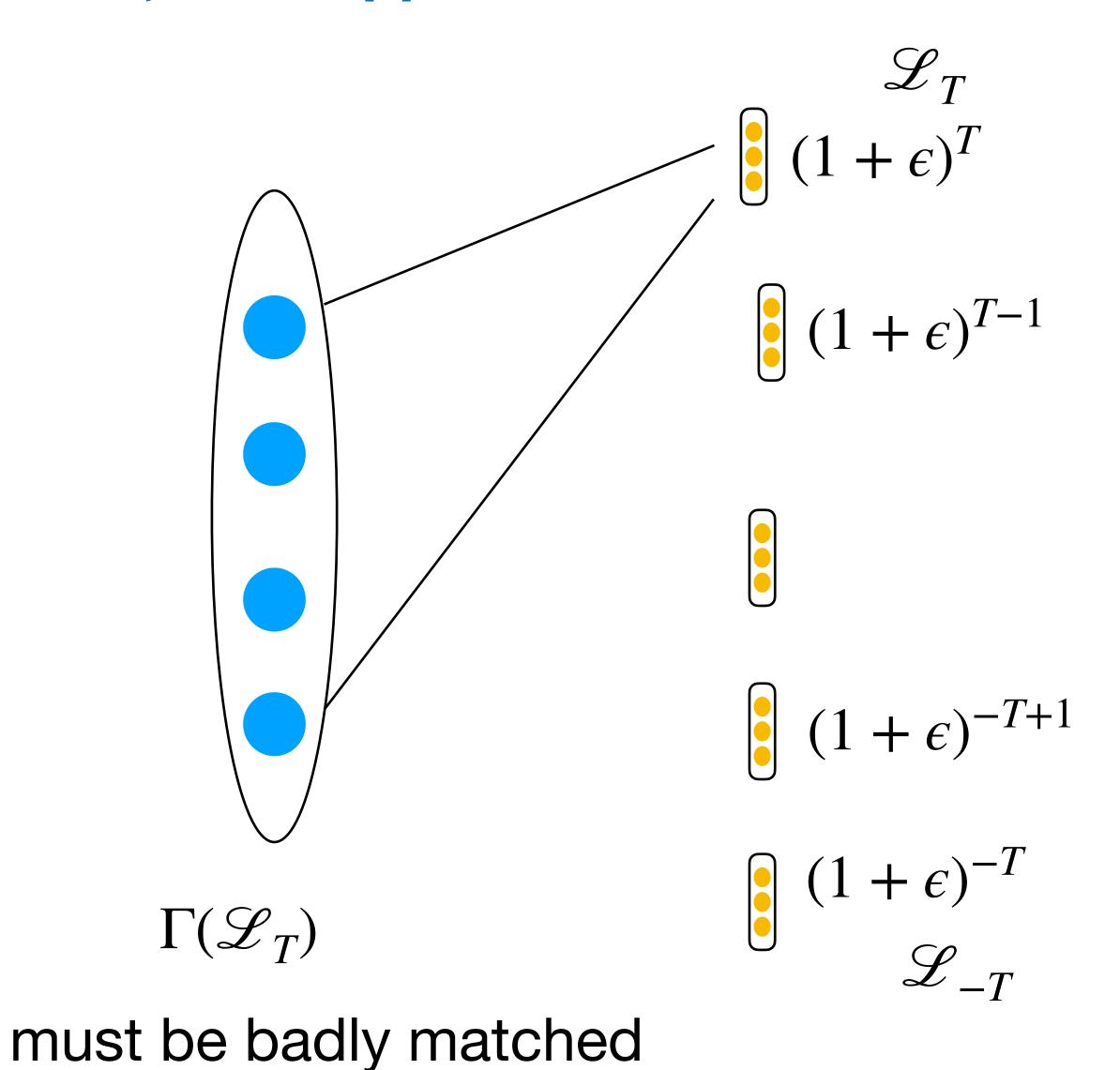


How could this matching be bad?

Analysis of approximation

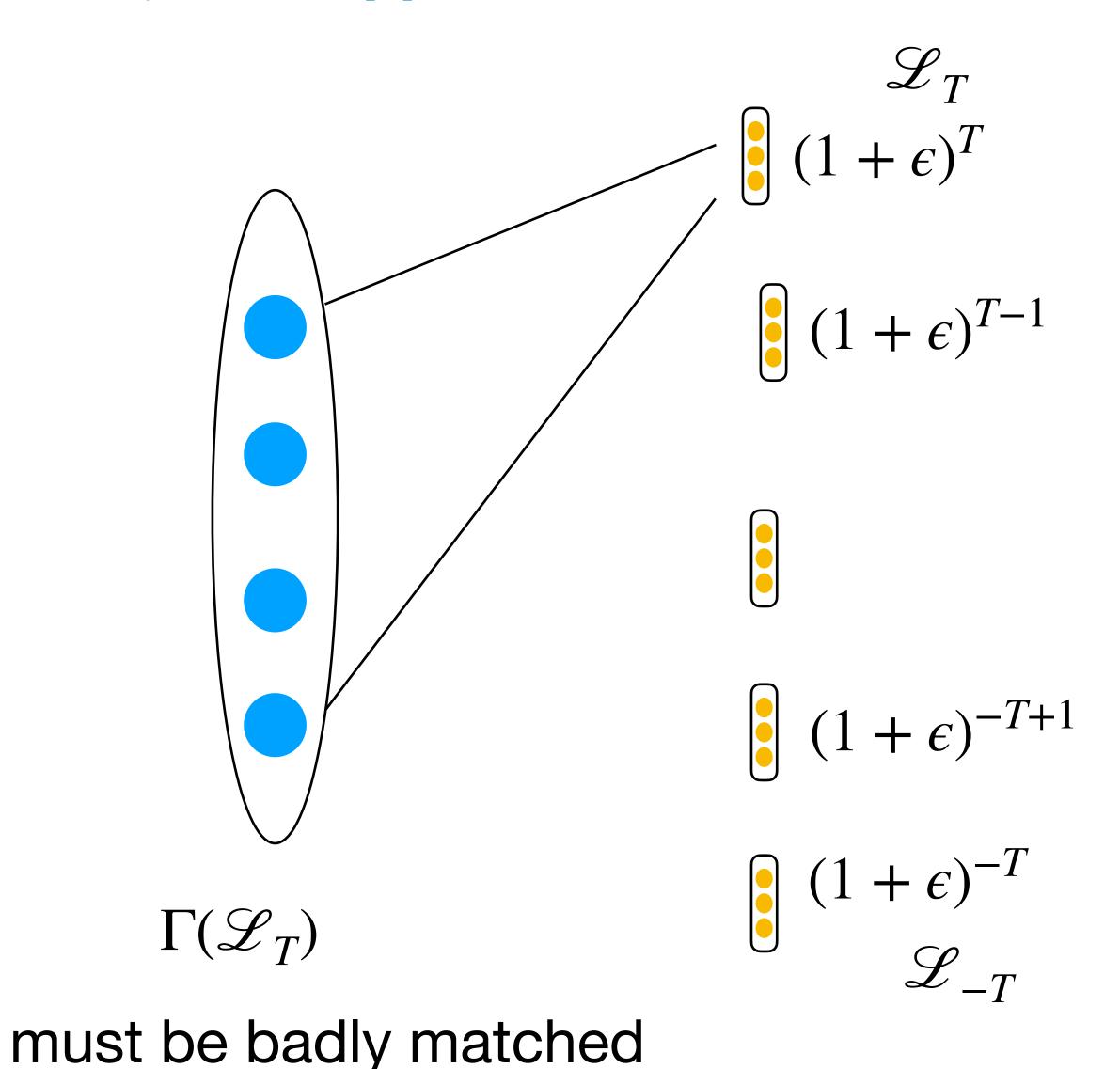


How could this matching be bad?



How could this matching be bad?

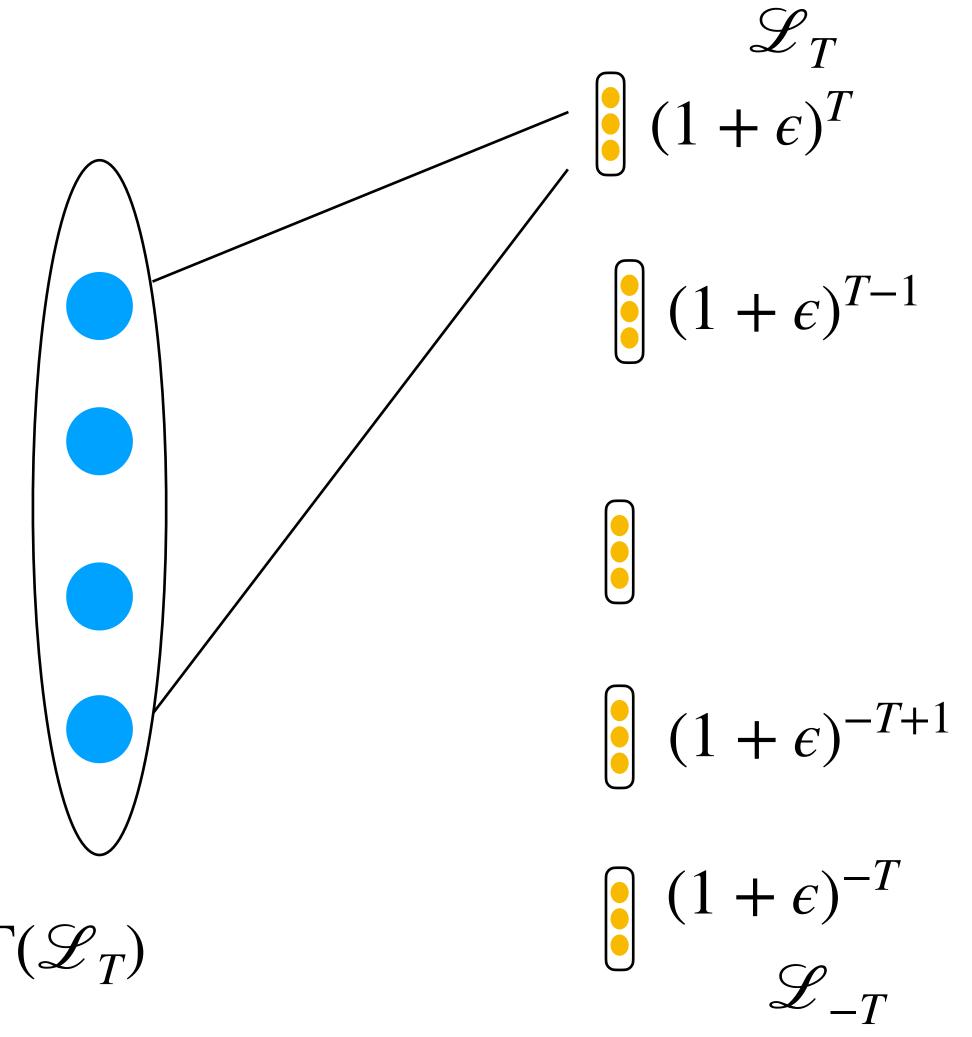
$$k = |\Gamma(\mathcal{L}_T)|$$



How could this matching be bad?

$$k = |\Gamma(\mathcal{L}_T)|$$

GOT = matching of the algorithm



must be badly matched

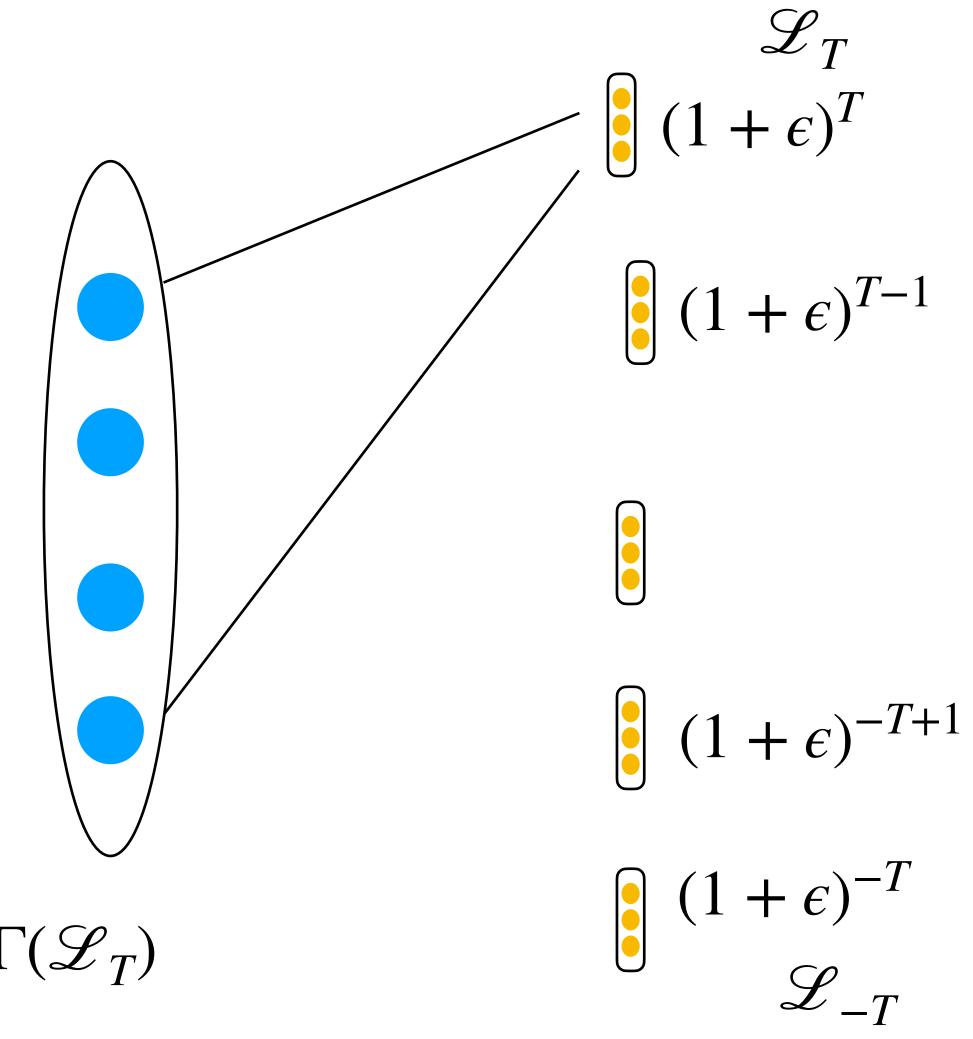
How could this matching be bad?

$$k = |\Gamma(\mathcal{L}_T)|$$

GOT = matching of the algorithm

Claim

 $GOT \ge k(1 - \epsilon)$ gets $2 + O(\epsilon)$ -approx

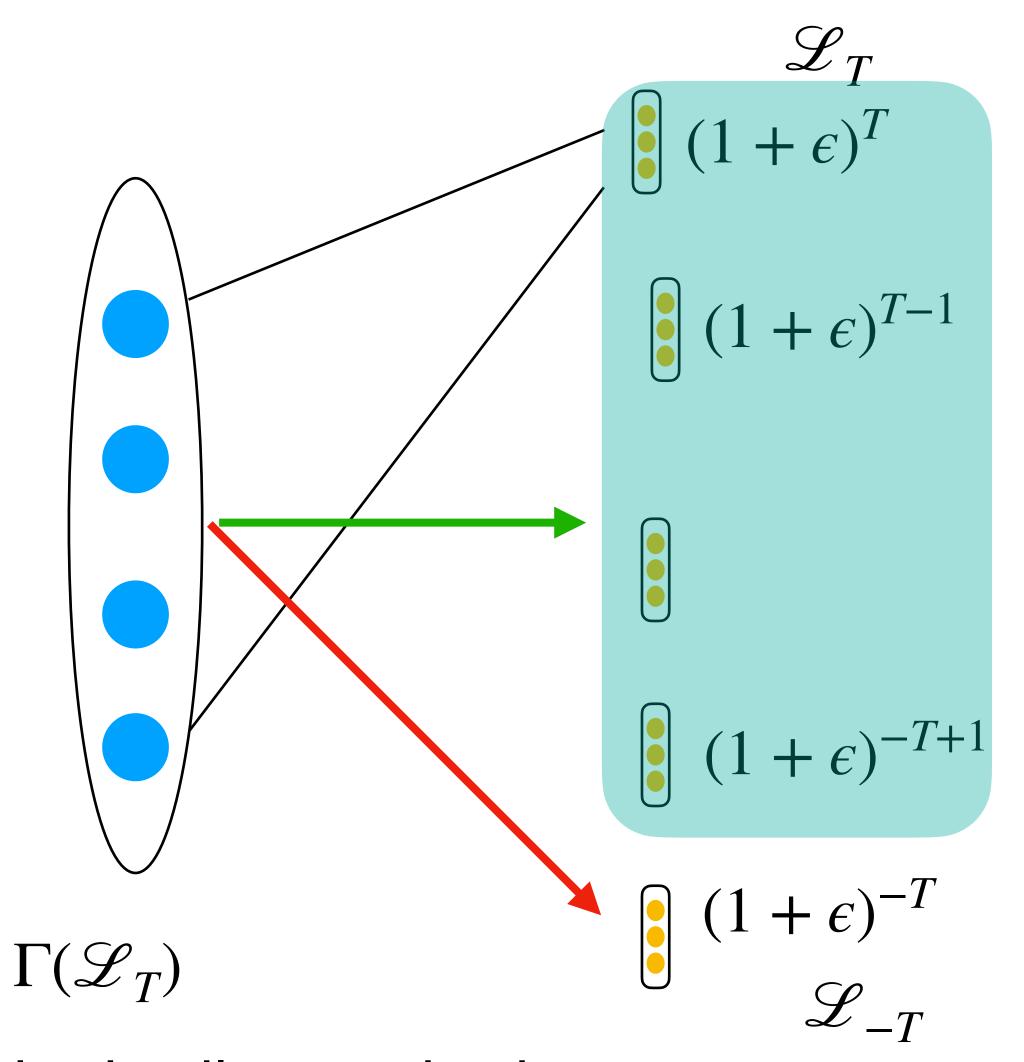


Claim

$$GOT \ge k(1 - \epsilon)$$
 gets $2 + O(\epsilon)$ -approx

Where did our algorithm assign $\Gamma(\mathcal{L}_T)$?

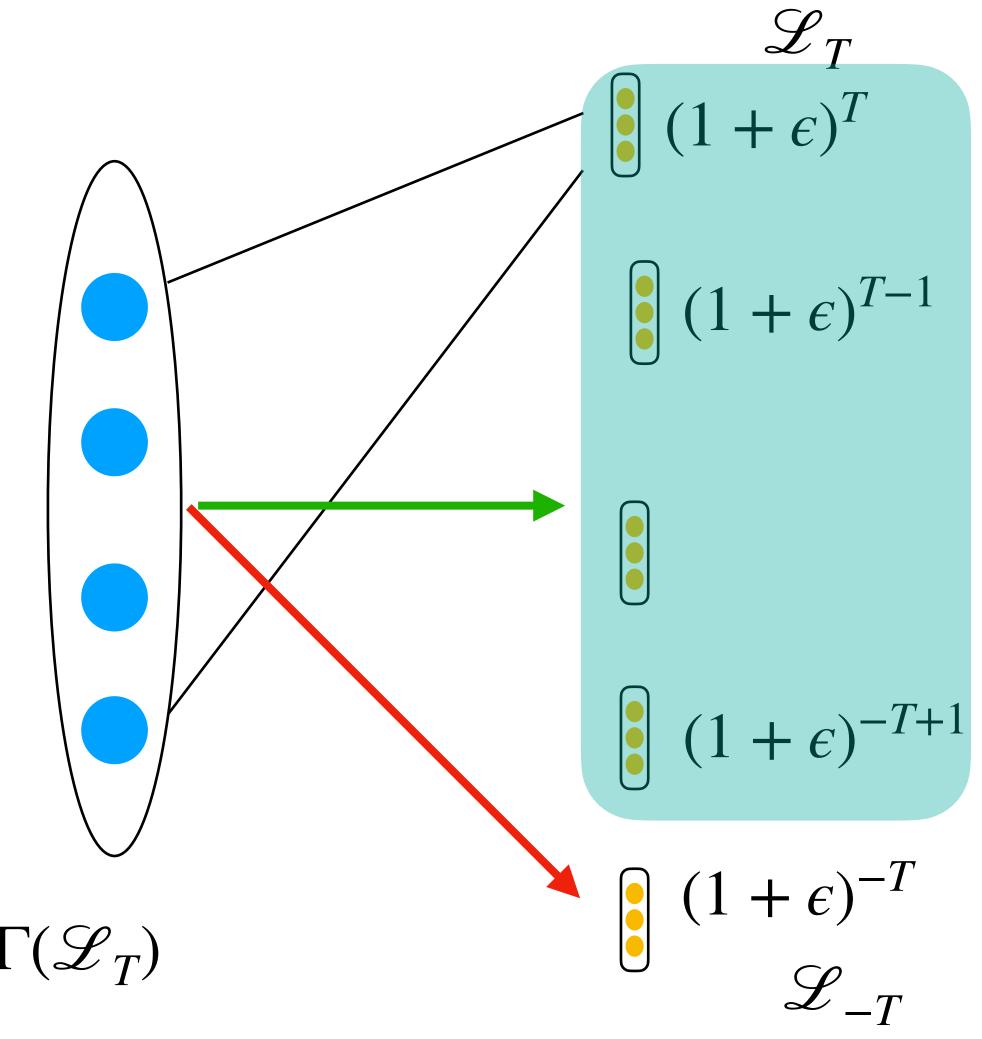
must be badly matched



must be badly matched

Claim $\mathrm{GOT} \geq k(1-\epsilon) \text{ gets } 2 + O(\epsilon) \text{-approx}$

Where did our algorithm assign $\Gamma(\mathcal{L}_T)$?



must be badly matched

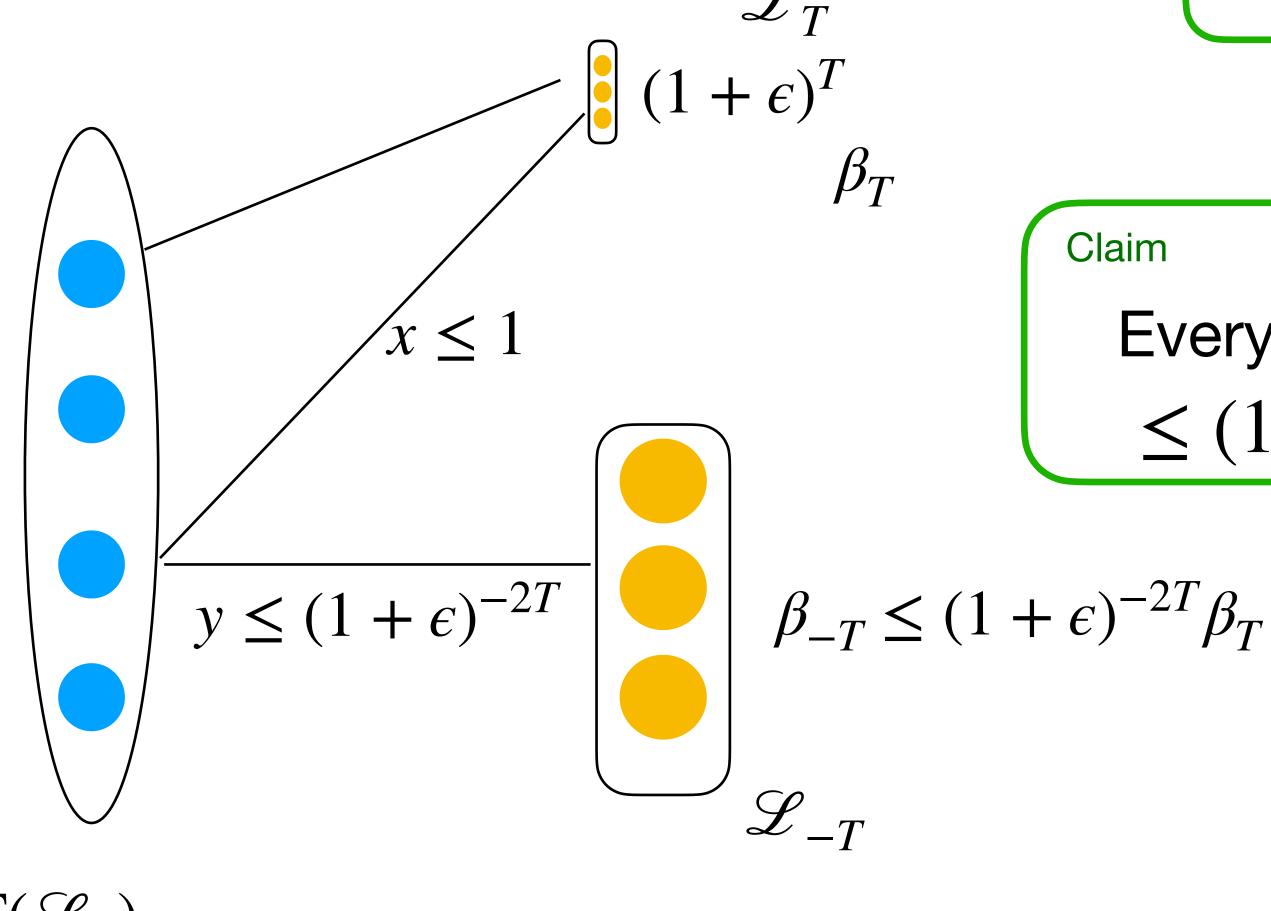
Claim

$$GOT \ge k(1 - \epsilon)$$
 gets $2 + O(\epsilon)$ -approx

Case 1:
$$|\mathcal{L}_{-T}| \geq k$$

$$GOT \ge k$$

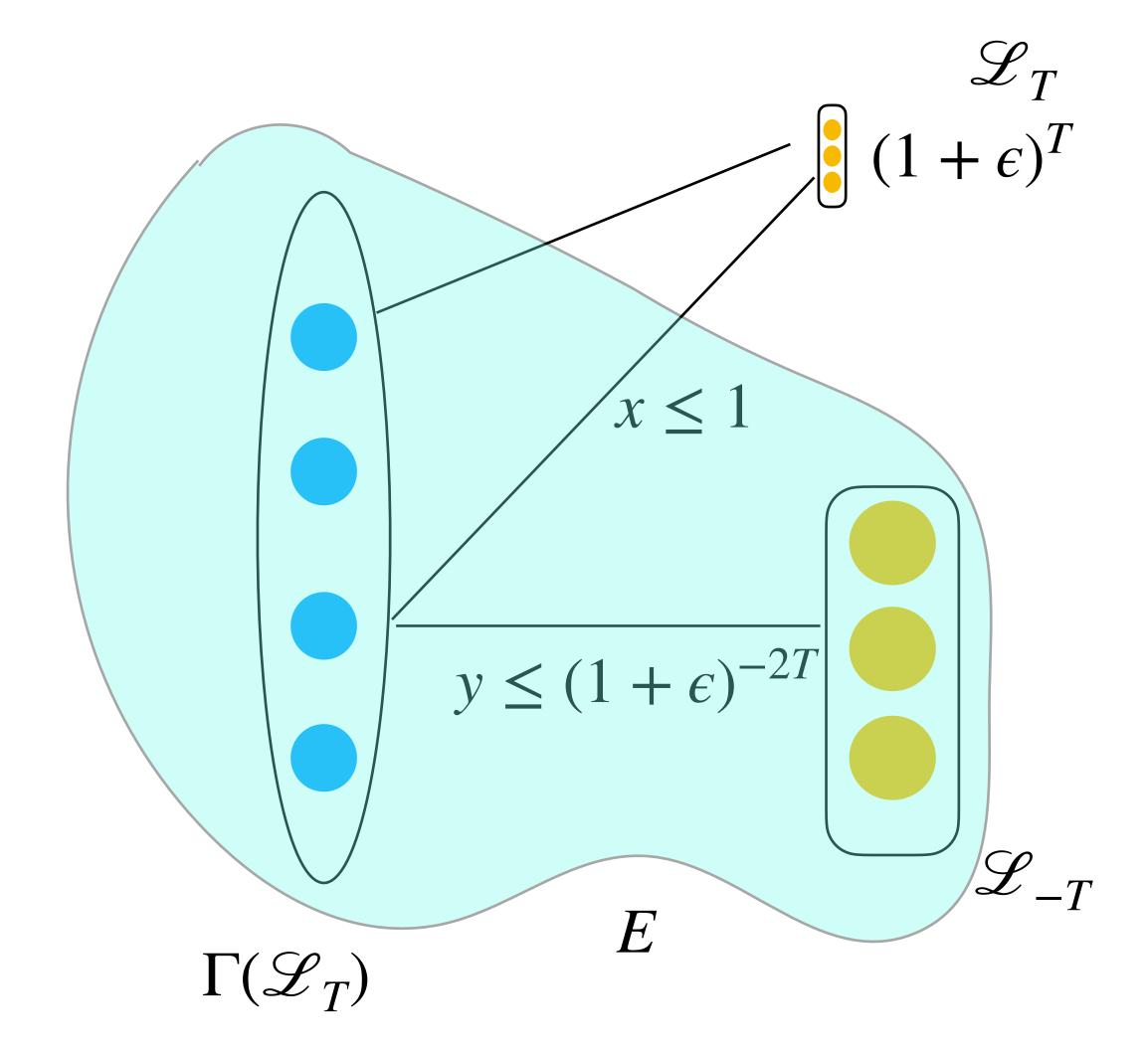
 $alloc_v = C_v$ after rescaling



Assume: $|\mathcal{L}_{-T}| \leq k$

Every edge to \mathcal{L}_{-T} has weight $\leq (1+\epsilon)^{-2T}$

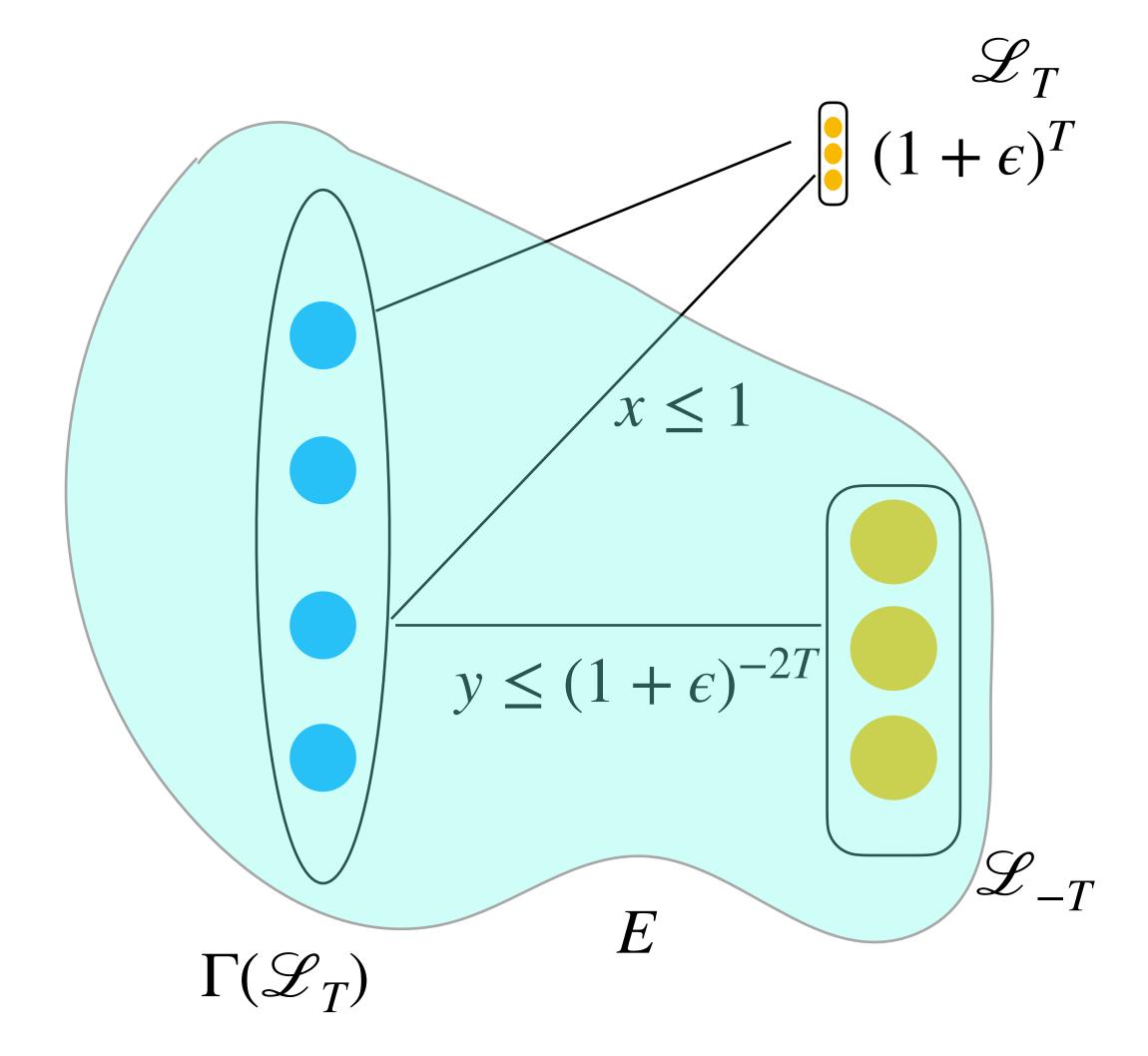
must be badly matched



must be badly matched

Assume: $|\mathcal{L}_{-T}| \leq k$

Matching sent to $\mathcal{L}_{-T} \leq |E| (1 + \epsilon)^{-2T}$

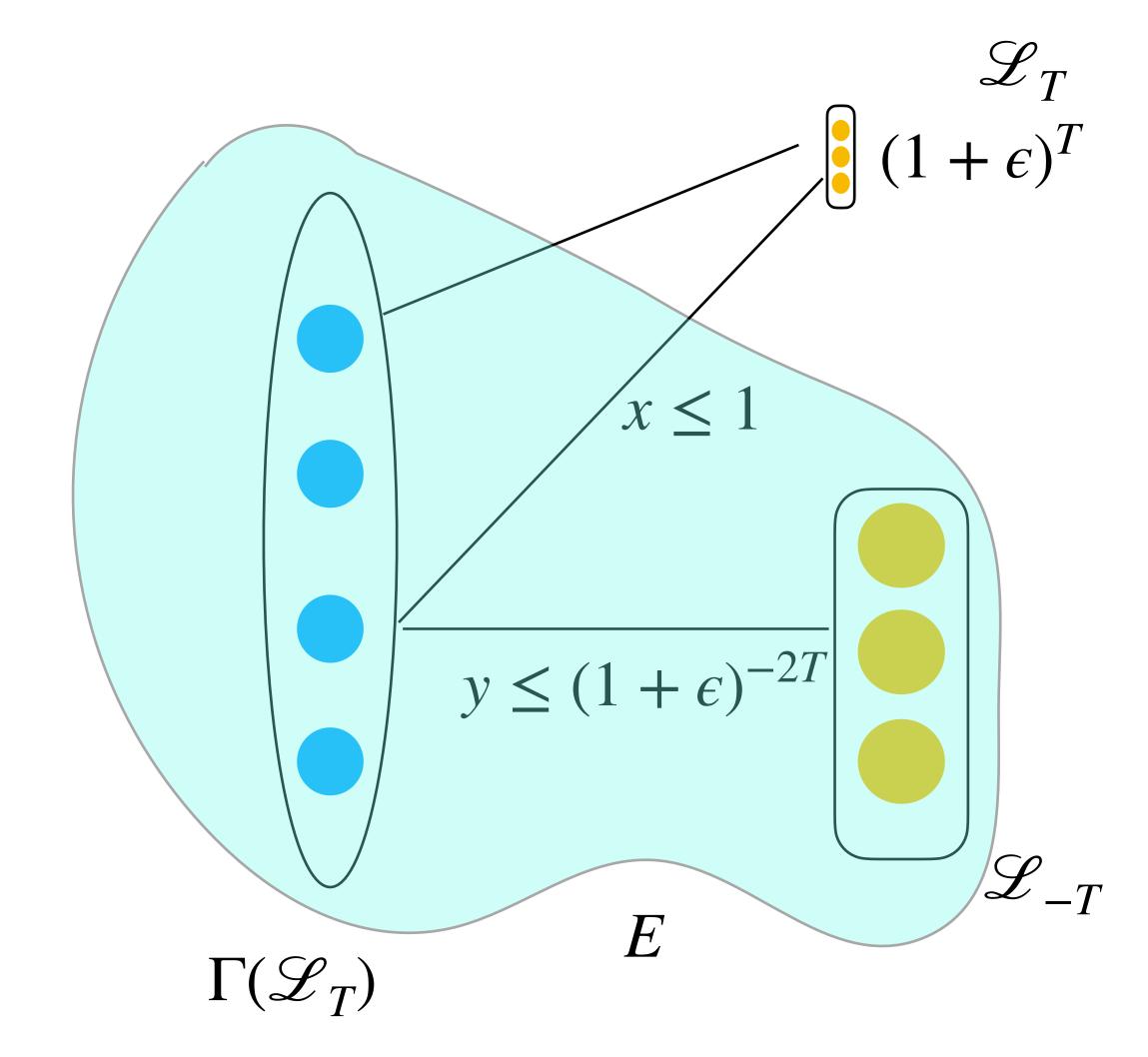


must be badly matched

Assume: $|\mathcal{L}_{-T}| \leq k$

Matching sent to $\mathcal{L}_{-T} \leq |E|(1+\epsilon)^{-2T}$

 $|E| \leq 4k\lambda$



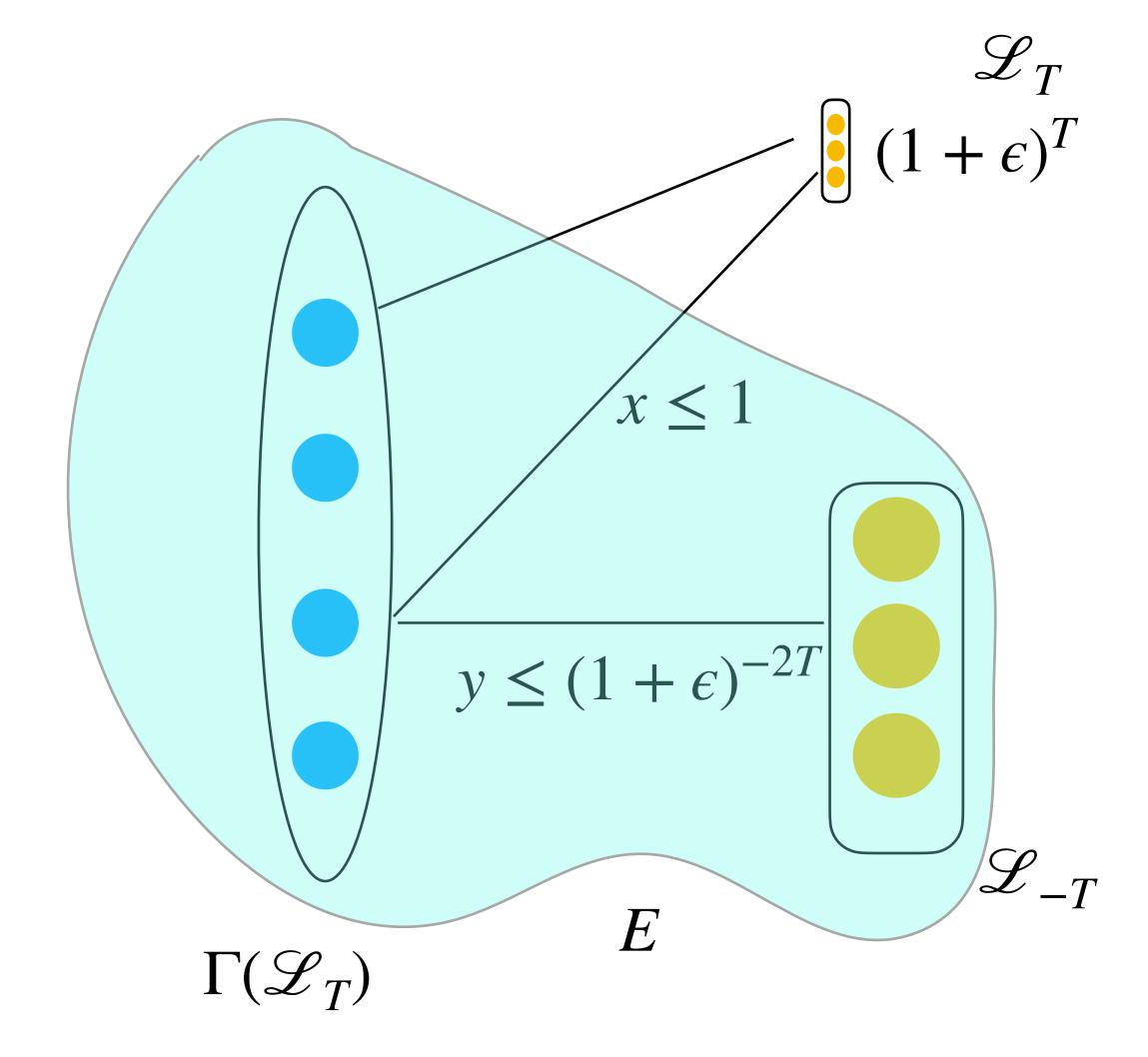
must be badly matched

Assume: $|\mathcal{L}_{-T}| \leq k$

Matching sent to $\mathcal{L}_{-T} \leq |E|(1+\epsilon)^{-2T}$

$$|E| \leq 4k\lambda$$

Matching sent to $\mathcal{L}_{-T} \leq 4k\lambda(1+\epsilon)^{-2T}$



must be badly matched

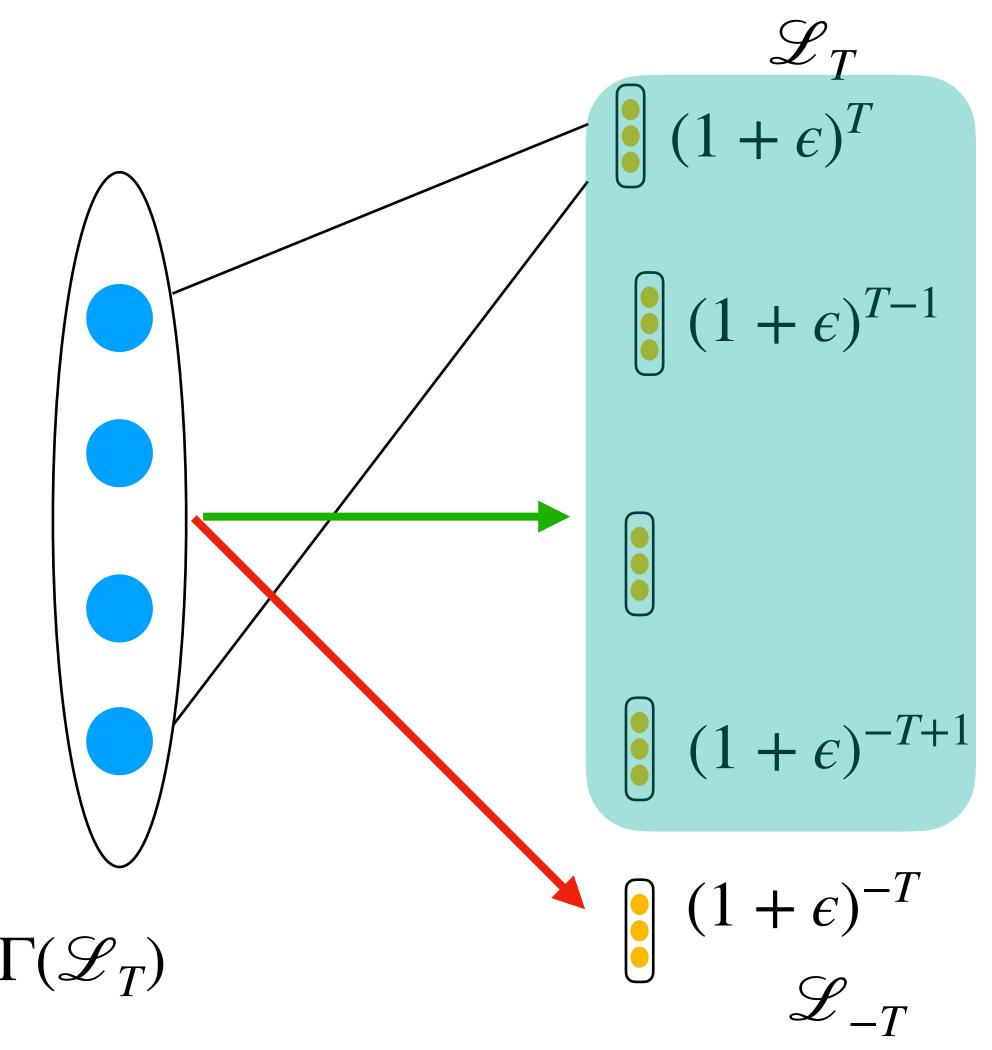
Assume: $|\mathcal{L}_{-T}| \leq k$

Matching sent to $\mathcal{L}_{-T} \leq |E|(1+\epsilon)^{-2T}$

$$|E| \leq 4k\lambda$$

Matching sent to $\mathscr{L}_{-T} \leq 4k\lambda(1+\epsilon)^{-2T}$ $\leq k\epsilon$

$$T = O_{\epsilon}(1 + \log \lambda)$$



must be badly matched

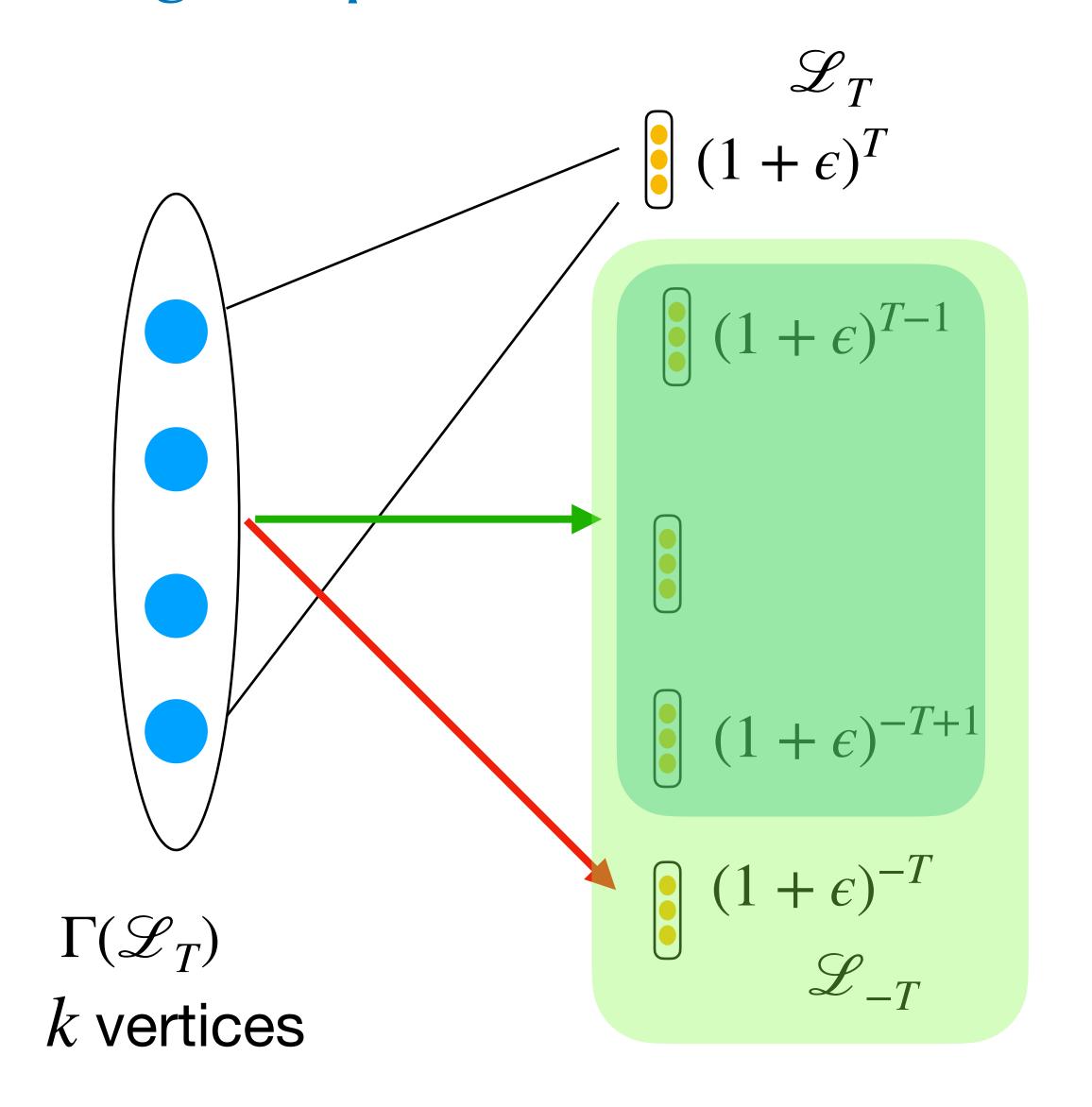
Claim

GOT
$$\geq k(1 - \epsilon)$$
 gets $2 + O(\epsilon)$ -approx

Assume: $|\mathcal{L}_{-T}| \leq k$

Matching sent to $\mathcal{L}_{-T} \leq k\epsilon$

$$\mathsf{GOT} \ge \frac{k(1 - \epsilon)}{(1 + 3\epsilon)}$$



$$\begin{aligned} \mathsf{TIGHT} &= & \mathsf{Total\ capacity} \\ \mathsf{excluding} \, \mathscr{L}_T \end{aligned}$$

$$OPT \leq TIGHT + k$$

GOT
$$\geq$$
 TIGHT/(1 + 3 ϵ)

$$2GOT \ge (TIGHT + k)/(1 + O(\epsilon))$$

GOT
$$\geq$$
 OPT/ $(2 + O(\epsilon))$



$$\begin{aligned} \text{TIGHT} &= & \text{Total capacity} \\ &= & \text{excluding } \mathcal{L}_T \end{aligned}$$

$$OPT \leq TIGHT + k$$

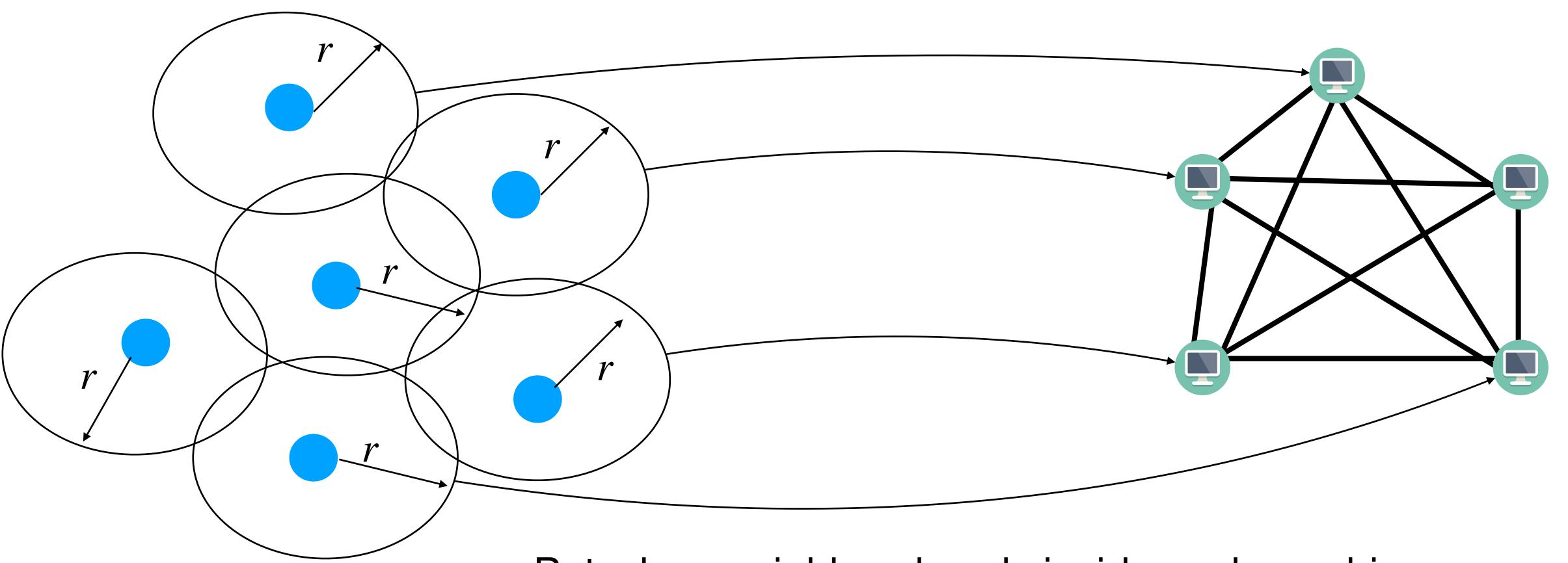
GOT
$$\geq$$
 TIGHT/(1 + 3 ϵ)

$$2GOT \ge (TIGHT + k)/(1 + O(\epsilon))$$

GOT
$$\geq$$
 OPT/ $(2 + O(\epsilon))$

Can be boosted to $1 + \epsilon$ using [GGM18]

Simulation in MPC



Put *r* hop-neighbourhoods inside each machine *r* rounds of LOCAL can be simulated!

Size > n?

Random Thresholding

Approximation argument perspective

if alloc_v <
$$C_v/(1 + \epsilon)$$

increase β_v by $1 + \epsilon$ factor

Random Thresholding

Approximation argument perspective

if alloc_v <
$$C_v/(1 + \epsilon)$$

increase β_v by $1 + \epsilon$ factor

Does this need to be strictly ϵ ?

$$\epsilon \leftarrow [\epsilon/2,\epsilon]$$

Does it need to be same for all vertices and rounds?

$$\epsilon_{v,t} \leftarrow [\epsilon/2,\epsilon]$$

Random Thresholding

Approximation argument perspective

if alloc_v <
$$C_v/(1 + \epsilon)$$

increase β_v by $1 + \epsilon$ factor

Does this need to be strictly ϵ ?

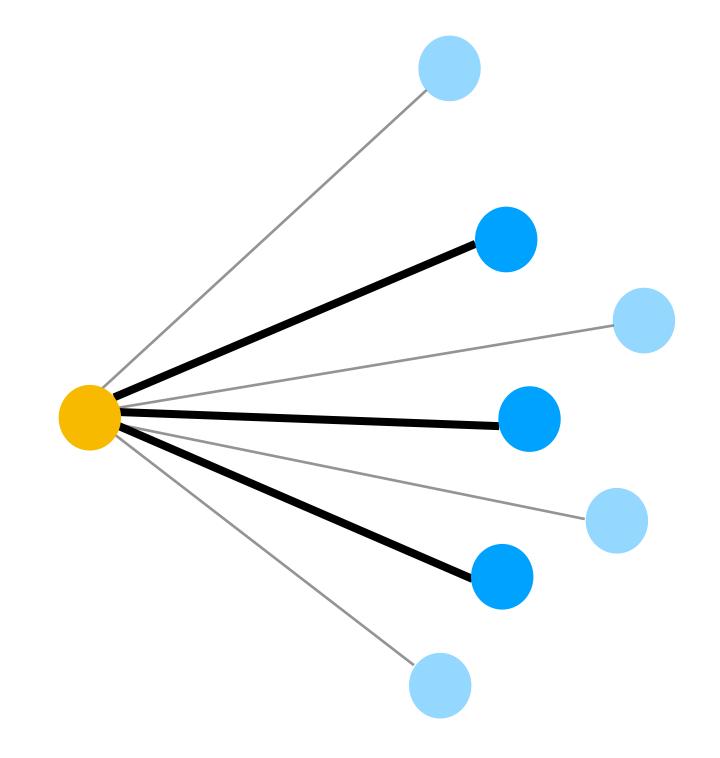
$$\epsilon \leftarrow [\epsilon/2,\epsilon]$$

Does it need to be same for all vertices and rounds?

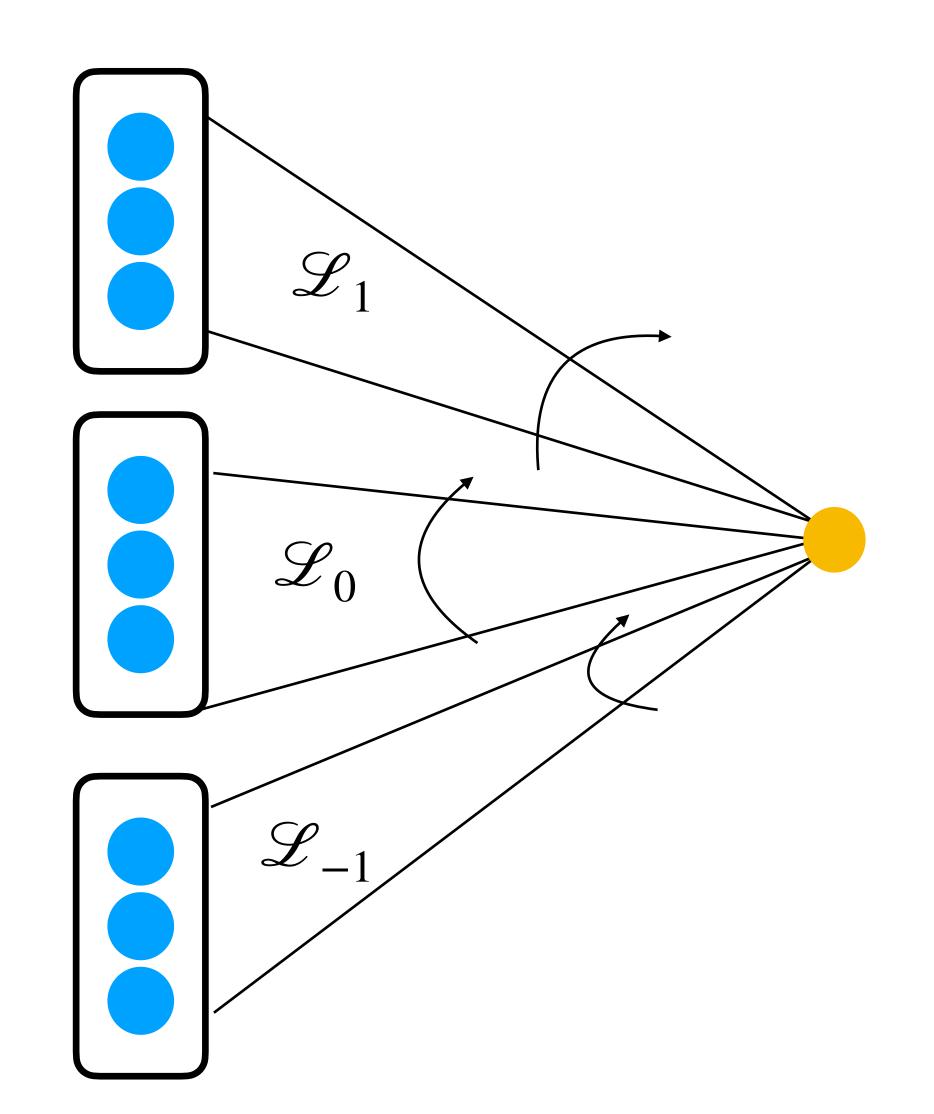
$$\epsilon_{v,t} \leftarrow [\epsilon/2,\epsilon]$$

Algorithm design perspective

$$\hat{alloc}_v \leftarrow 1 + \epsilon$$
 approx of $alloc_v$



Bucketing + uniform sampling does the trick



$$\beta_u = \sum x_{u,v}$$

 β_u changes by factor $(1 + \epsilon)$

$$\mathcal{L}_i = \{ v \mid \beta_v \in [(1 + \epsilon)^i, (1 + \epsilon)^{i-1}) \}$$

Uniformly sampling from \mathcal{L}_{v} is enough!

r – hop neighbourhood has size $2^{O(r^2)}$

Open Problems

Open Problem 1

Can our results be extended to b—matching problem?

Open Problem 2

Can we get dependence on average degree instead?