
Faster MPC Algorithms
for Allocation

in Uniformly Sparse Graphs

Jakub Łącki

Łącki

Slobodan Mitrović
 Wen-Horng Sheu

Srikkanth R

Google Research UC Davis UC Davis

UC Davis

https://research.google/people/105517/
https://scholar.google.com/citations?user=O62Q1t0AAAAJ&hl=en

Overview of the Talk

1. Problem definition and notation 
 
2. Overview of prior work and our results 
 
3. A fast allocation algorithm in the LOCAL model 
 
4. Fast implementation in sublinear MPC model

The Allocation Problem

AdvertisersUsersn a

C1

C2

C3

Ca

Constraints:

O/p :
Subset of edges M

(i) Each user has 1 edge≤
(i) Each ad has edgesv ≤ Cv

Objective:

Maximize |M |

I/p :
Bipartite graph with  
node capacities Cv ≥ 1

Prior Work on Allocation

[Agrawal, Mirrokni,  
Zadimoghaddam  
ICML ’18]

[Ahmadian, Liu,  
Peng, Zadimoghaddam  
ITCS ’22]

[Mehta, Saberi,  
Vazirani, Vazirani  
JACM ’07]

[Dhillon KDD ’01] Co-clustering documents

Adsense problem and generalised online matching

Distributed proportional allocation

Distributed load balancing

primitive

LOCAL model

Nodes are computers

Message passing
Message passing

Synchronous rounds
Ideal parameters

Nodes have limited memory S = nδ

Synchronous rounds

Topology of graph = communication network

sub-linear MPC model

Communication network is a clique

Arboricity of a graph

Arboricity(G) = λ

⇔ E(G) can be decomposed into λ forests

Every vertex induced subgraph has  
average degree at most 2λ

⇒

⇒ Δavg/2 ≤ λ ≤ Δ = max
v∈G

deg(v)

Prior Work on Matchings — Distributed and MPC

[Ghaffari and Uitto,  
SODA ’19]

[Ghaffari, Grunau, 
Jin DISC ’21]

[Ghaffari, Grunau,  
Mitrovic SPAA ’22]

Maximal matching in  
sub-linear MPC rounds

Õ(log Δ)

[Kapralov, Khanna, 
Sudhan SODA ’14] matching in LOCAL rounds1 + ϵ Oϵ(log Δ)

 approximate b-matching in  
near-linear MPC rounds
1 + ϵ O(log log Δavg)

Maximal matching in  
sub-linear MPC rounds

Õ(log λ + log log n)

Our Results

Q1. Is there an efficient LOCAL algorithm for allocation that runs fast in sparse graphs?

Q2. Can such algorithms be implemented efficiently in sub-linear MPC?

There exists a LOCAL algorithm for allocation that runs
Oϵ(log λ)

Theorem 1

The allocation algorithm can be implemented in

rounds

Õϵ(log λ)

Theorem 2

sub-linear MPC rounds

in

Overall pipeline

Algorithm of
[AMZ ICML ’18]

Proof of
fast

approximation

Sampling
needed

to sparsify
for MPC

Rounding and
boosting to

integral
matching

Fractional  
Allocation

Integral  
Allocation

∑ xi ≤ Cv

The Allocation Algorithm

AdvertisersUsersn a

C1

C2

C3

Ca

u

xu,1 ∝ β1

xu,2 ∝ β2

xu,a ∝ βa

There exists a global “preference” 
 for the advertisers

βv ∈ (0,∞) for each advertiser v
xu,v ∝ βv

gives a 1 + ϵ approximate matching

xu,v =
βv

∑
(u,v′￼)exists

βv′￼

assigning

such that

The Allocation Algorithm

AdvertisersUsersn a

C1

C2

C3

Ca

There exists a global “preference” 
 for the advertisers

βv ∈ (0,∞) for each advertiser v such that

xu,v ∝ βv

gives a 1 + ϵ approximate matching

xu,v =
βv

∑
(u,v′￼)exists

βv′￼

assigning

The Allocation Algorithm

AdvertisersUsersn a

C1

C2

C3

Ca

Start with βv = 1 ∀v

The Allocation Algorithm

AdvertisersUsersn a

C1

C2

C3

Ca

Start with βv = 1 ∀v

Check how it does locally

The Allocation Algorithm

AdvertisersUsersn a

C1

C2

C3

Ca

Start with βv = 1 ∀v

Check how it does locally

Change by factorβv 1 + ϵ

The Allocation Algorithm

AdvertisersUsersn a

C1

C2

C3

Ca

Start with βv = 1 ∀v

Check how it does locally

Change by factorβv 1 + ϵ

Repeat T times

The Allocation Algorithm

AdvertisersUsersn a

C1

C2

C3

Ca

User Round

u

The Allocation Algorithm

AdvertisersUsersn a

C1

C2

C3

Ca

Each user gets current from neighboursu βv

User Round

β1
β2

βa

u

The Allocation Algorithm

AdvertisersUsersn a

C1

C2

C3

Ca

Each user gets current from neighboursu βv

Compute xu,v =
βv

∑ βv′￼

User Round

u

The Allocation Algorithm

AdvertisersUsersn a

C1

C2

C3

Ca

Each user gets current from neighboursu βv

Compute xu,v =
βv

∑ βv′￼

Send to xu,v v

User Round

xu,1

xu,2

xu,a

u

The Allocation Algorithm

AdvertisersUsersn a

Cv

Receive xu,v

v

x1,v

x2,v

x3,v

Advertiser Round

The Allocation Algorithm

AdvertisersUsersn a

Cv

Receive xu,v

Compute allocv = ∑ xu,v
v

Advertiser Round

The Allocation Algorithm

AdvertisersUsersn a

Cv

Receive xu,v

Compute allocv = ∑ xu,v
v

 if allocv < Cv/(1 + ϵ)

 else if allocv > Cv(1 + ϵ)

increase by factorβv 1 + ϵ

decrease by factorβv 1 + ϵ

Advertiser Round

The Allocation Algorithm

AdvertisersUsersn a

Cv

Receive xu,v

Compute allocv = ∑ xu,v
v

 if allocv < Cv/(1 + ϵ)

 else if allocv > Cv(1 + ϵ)

increase by factorβv 1 + ϵ

decrease by factorβv 1 + ϵ

Send βv

βv

βv

βv

Advertiser Round

The Allocation Algorithm

AdvertisersUsersn a

Cv

Receive xu,v

Compute allocv = ∑ xu,v

Advertiser Round

v
 if allocv < Cv/(1 + ϵ)

 else if allocv > Cv(1 + ϵ)

increase by factorβv 1 + ϵ

decrease by factorβv 1 + ϵ

Send βv

under-allocation

over-allocation

The Allocation Algorithm

Receive xu,v

Compute allocv = ∑ xu,v

Advertiser Round

 if allocv < Cv/(1 + ϵ)

 else if allocv > Cv(1 + ϵ)

increase by factorβv 1 + ϵ

decrease by factorβv 1 + ϵ

Send βv

Each user gets current  
from neighbours

u βv

Compute xu,v =
βv

∑ βv′￼

Send to xu,v v

User Round

The Allocation Algorithm

AdvertisersUsersn a

Cv

Last Round

v

If allocv > Cv

Rescale so that xu,v allocv = Cv

Feasible matching guaranteed

xu,v ← xu,v/ max(1,allocv/Cv)
u

Proof of approximation

How does over/under allocation  
for a fixed advertiser  
change with time? 1 + ε

1 + 3ε

1 − ε

1 − 3ε

1

Current ratio

Study Allocation / Capacity ratio

Claim

 change by 
 factor each round

βv, xu,v, allocv/Cv
1 + O(ϵ)

Proof of approximation

1 + ε

1 + 3ε

1 − ε

1 − 3ε

1

Current ratio

Study Allocation / Capacity ratio

xu,v =
βv

∑ βv′￼

x′￼u,v ∈ [
1

(1 + ϵ)2
, (1 + ϵ)2] ⋅ xu,v

xu,vu v

Proof of approximation

1 + ε

1 + 3ε

1 − ε

1 − 3ε

1

Current ratio

Study Allocation / Capacity ratio

alloca = ∑ xu′￼,a

allocnew
a ∈ [

1
(1 + ϵ)2

, (1 + ϵ)2] ⋅ alloca

Proof of approximation

1 + ε

1 + 3ε

1 − ε

1 − 3ε

1

Case 1: Blue region

alloca = ∑ xu′￼,a

Current ratio

xu,v =
βv

∑ βv′￼

v

Next upper bound

Next lower bound

alloca/Ca ∈ [1 − ϵ,1 + ϵ]

Proof of approximation

1 + ε

1 + 3ε

1 − ε

1 − 3ε

1

Case 2: Purple region

alloca = ∑ xu′￼,a

Current ratioxu,v =
βv

∑ βv′￼

Next upper bound

Next lower bound

v

alloca/Ca ∈ [1 − 3ϵ,1 + 3ϵ]∖[1 − ϵ,1 + ϵ]

Proof of approximation

1 + ε

1 + 3ε

1 − ε

1 − 3ε

1

Case 2: Purple region

alloca = ∑ xu′￼,a

Current ratioxu,v =
βv

∑ βv′￼

Next upper bound

Next lower bound

No escaping the good region!

v

Partition the advertisers according to their final priority values

1

(1 + ϵ)

(1 + ϵ)T

(1 + ϵ)−T

(1 + ϵ)−T+1

(1 + ϵ)−1

(1 + ϵ)T−1

Partition the advertisers according to their final priority values

1

(1 + ϵ)

(1 + ϵ)T

(1 + ϵ)−T

(1 + ϵ)−T+1

(1 + ϵ)−1

(1 + ϵ)T−1

alloca/Ca ∈ [1/(1 + 3ϵ), (1 + 3ϵ)]

Severely under-allocated

Severely over-allocated

Claim

Except first and last set, rest are  
“almost perfectly” allocated

ℒ0

ℒT

ℒ−T

Analysis of approximation

(1 + ϵ)T

(1 + ϵ)−T

How could this matching be bad?

ℒT

ℒ−T

(1 + ϵ)−T+1

(1 + ϵ)T−1

Analysis of approximation

(1 + ϵ)T

(1 + ϵ)−T

How could this matching be bad?

ℒT

ℒ−T

(1 + ϵ)−T+1

(1 + ϵ)T−1

Γ(ℒT)

must be badly matched

Analysis of approximation

(1 + ϵ)T

(1 + ϵ)−T

How could this matching be bad?

ℒT

ℒ−T
Γ(ℒT)

must be badly matched

k = |Γ(ℒT) |

(1 + ϵ)−T+1

(1 + ϵ)T−1

Analysis of approximation

(1 + ϵ)T

(1 + ϵ)−T

How could this matching be bad?

ℒT

ℒ−T
Γ(ℒT)

must be badly matched

k = |Γ(ℒT) |

(1 + ϵ)−T+1

(1 + ϵ)T−1

𝖦𝖮𝖳 = matching of the algorithm

Analysis of approximation

(1 + ϵ)T

(1 + ϵ)−T

How could this matching be bad?

ℒT

ℒ−T
Γ(ℒT)

must be badly matched

Claim

𝖦𝖮𝖳 ≥ k(1 − ϵ) gets -approx2 + O(ϵ)

k = |Γ(ℒT) |

𝖦𝖮𝖳 = matching of the algorithm

(1 + ϵ)−T+1

(1 + ϵ)T−1

Analysis of approximation

(1 + ϵ)T

(1 + ϵ)−T

Where did our algorithm assign 
 Γ(ℒT)?

ℒT

ℒ−T
Γ(ℒT)

must be badly matched

Claim

𝖦𝖮𝖳 ≥ k(1 − ϵ) gets -approx2 + O(ϵ)

(1 + ϵ)−T+1

(1 + ϵ)T−1

Analysis of approximation

(1 + ϵ)T

(1 + ϵ)−T

Where did our algorithm assign 
 Γ(ℒT)?

ℒT

ℒ−T
Γ(ℒT)

must be badly matched

Claim

𝖦𝖮𝖳 ≥ k(1 − ϵ) gets -approx2 + O(ϵ)

(1 + ϵ)−T+1

(1 + ϵ)T−1

(1 + ϵ)T

(1 + ϵ)−T

ℒT

ℒ−T
Γ(ℒT)

must be badly matched

(1 + ϵ)−T+1

(1 + ϵ)T−1
Case 1: |ℒ−T | ≥ k

𝖦𝖮𝖳 ≥ k

Analysis of approximation

allocv = Cv after rescaling

Claim

𝖦𝖮𝖳 ≥ k(1 − ϵ) gets -approx2 + O(ϵ)

Bounding the optimum

(1 + ϵ)T
ℒT

ℒ−T

Γ(ℒT)

must be badly matched

Assume : |ℒ−T | ≤ k

βT

β−T ≤ (1 + ϵ)−2T βT

x ≤ 1
Claim

Every edge to  ℒ−T has weight
≤ (1 + ϵ)−2T

y ≤ (1 + ϵ)−2T

Bounding the optimum

(1 + ϵ)T
ℒT

ℒ−T

Γ(ℒT)

must be badly matched

x ≤ 1

y ≤ (1 + ϵ)−2T

Matching sent to ℒ−T ≤ |E | (1 + ϵ)−2T

Assume : |ℒ−T | ≤ k

E

Bounding the optimum

(1 + ϵ)T
ℒT

ℒ−T

Γ(ℒT)

must be badly matched

x ≤ 1

y ≤ (1 + ϵ)−2T

Matching sent to ℒ−T ≤ |E | (1 + ϵ)−2T

|E | ≤ 4kλ

Assume : |ℒ−T | ≤ k

E

Bounding the optimum

(1 + ϵ)T
ℒT

ℒ−T

Γ(ℒT)

must be badly matched

x ≤ 1

y ≤ (1 + ϵ)−2T

Matching sent to ℒ−T ≤ |E | (1 + ϵ)−2T

|E | ≤ 4kλ

Matching sent to ℒ−T ≤ 4kλ(1 + ϵ)−2T

Assume : |ℒ−T | ≤ k

E

Bounding the optimum

(1 + ϵ)T
ℒT

ℒ−T

Γ(ℒT)

must be badly matched

x ≤ 1

y ≤ (1 + ϵ)−2T

Matching sent to ℒ−T ≤ |E | (1 + ϵ)−2T

|E | ≤ 4kλ

Matching sent to ℒ−T ≤ 4kλ(1 + ϵ)−2T

≤ kϵ

T = Oϵ(1 + log λ)

Assume : |ℒ−T | ≤ k

E

(1 + ϵ)T

(1 + ϵ)−T

ℒT

ℒ−T
Γ(ℒT)

must be badly matched

(1 + ϵ)−T+1

(1 + ϵ)T−1

Analysis of approximation Claim

𝖦𝖮𝖳 ≥ k(1 − ϵ) gets -approx2 + O(ϵ)

Matching sent to ℒ−T ≤ kϵ

Assume : |ℒ−T | ≤ k

𝖦𝖮𝖳 ≥
k(1 − ϵ)
(1 + 3ϵ)

Bounding the optimum

(1 + ϵ)T

(1 + ϵ)−T

ℒT

ℒ−T
Γ(ℒT)
k vertices

(1 + ϵ)−T+1

(1 + ϵ)T−1

𝖳𝖨𝖦𝖧𝖳 =
Total capacity  
excluding ℒT

𝖮𝖯𝖳 ≤ 𝖳𝖨𝖦𝖧𝖳 + k

 𝖦𝖮𝖳 ≥ 𝖳𝖨𝖦𝖧𝖳/(1 + 3ϵ)

2𝖦𝖮𝖳 ≥ (𝖳𝖨𝖦𝖧𝖳 + k)/(1 + O(ϵ))

𝖦𝖮𝖳 ≥ 𝖮𝖯𝖳/(2 + O(ϵ))

Bounding the optimum

(1 + ϵ)T

(1 + ϵ)−T

ℒT

ℒ−T
Γ(ℒT)
k vertices

(1 + ϵ)−T+1

(1 + ϵ)T−1

𝖳𝖨𝖦𝖧𝖳 =
Total capacity  
excluding ℒT

𝖮𝖯𝖳 ≤ 𝖳𝖨𝖦𝖧𝖳 + k

 𝖦𝖮𝖳 ≥ 𝖳𝖨𝖦𝖧𝖳/(1 + 3ϵ)

2𝖦𝖮𝖳 ≥ (𝖳𝖨𝖦𝖧𝖳 + k)/(1 + O(ϵ))

𝖦𝖮𝖳 ≥ 𝖮𝖯𝖳/(2 + O(ϵ))

Can be boosted to using [GGM18]1 + ϵ

Simulation in MPC

r

r

r

r

r

r

Put hop-neighbourhoods inside each machiner

Size > n ?

 rounds of LOCAL can be simulated!r

Random Thresholding

 if allocv < Cv/(1 + ϵ)

increase by factorβv 1 + ϵ

Approximation argument perspective

Random Thresholding

 if allocv < Cv/(1 + ϵ)

increase by factorβv 1 + ϵ

Does this need to be strictly ϵ?

Does it need to be same for all vertices 
and rounds?

ϵ ← [ϵ/2,ϵ]

ϵv,t ← [ϵ/2,ϵ]

Approximation argument perspective

Random Thresholding

 if allocv < Cv/(1 + ϵ)

increase by factorβv 1 + ϵ

Does this need to be strictly ϵ?

Does it need to be same for all vertices 
and rounds?

ϵ ← [ϵ/2,ϵ]

ϵv,t ← [ϵ/2,ϵ]

̂allocv ← 1 + ϵ approx of allocv

Approximation argument perspective Algorithm design perspective

Bucketing + uniform sampling does the trick

ℒ1

ℒ0

ℒ−1

βu = ∑ xu,v

βu changes by factor (1 + ϵ)

ℒi = {v ∣ βv ∈ [(1 + ϵ)i, (1 + ϵ)i−1)}

Uniformly sampling from is enough!ℒv

2O(r2)r − hop neighbourhood has size

Open Problems

Open Problem 1

Can our results be extended to matching problem?b−

Open Problem 2

Can we get dependence on average degree instead?

