Faster MPC Algorithms
for Allocation
In Uniformly Sparse Graphs

Jakub tacki Slobodan Mitrovic Wen-Horng Sheu

Google Researc h UC Davis UC Davis

Srikkanth R

UC Davis

https://research.google/people/105517/
https://scholar.google.com/citations?user=O62Q1t0AAAAJ&hl=en

Overview of the Talk

1. Problem definition and notation
2. Overview of prior work and our results

3. A fast allocation algorithm in the LOCAL model

4. Fast implementation in sublinear MPC model

The Allocation Problem l/p :
Bipartite graph with

"} C, node capacities C;, > 1

) Subset of edges M
C2 :
Constraints:
® () Each user has < 1 edge
® - C, () Each ad v has < C,, edges
C Objective:

n Users Maximize |M |

a Advertisers

Prior Work on Allocation

[Dhillon KDD ’01] Co-clustering documents

[Mehta, Saberi,

Vazirani, Vazirani Adsense problem and generalised online matching
JACM ’07]

[Agrawal, Mirrokni, L . .

Zadimoghaddam Distributed proportional allocation

ICML 18] l primitive
[Ahmadian, Liu,

Peng, Zadimoghaddam Distributed load balancing
ITCS '22]

LOCAL model

Nodes are computers
Topology of graph = communication network

Message passing
Synchronous rounds

|deal parameters

sub-linear MPC model

Message passing

Communication network is a clique

Nodes have limited memory S = n°

Synchronous rounds

Arboricity of a graph

Arboricity(G) = 1

< E(G) can be decomposed into A forests

Every vertex induced subgraph has
average degree at most 24

=

&

= A [2 <1< A =maxdeg(v)
w8 veG

Prior Work on Matchings — Distributed and MPC

[Kapralov, Khanna,

Sudhan SODA ’14] 1 + € matching in O_(log A) LOCAL rounds

‘Ghaffari and Uitto, Maximal matching in O(y/log A)

SODA ’19] sub-linear MPC rounds

[Ghaffari, Grunau, Maximal matching in O(y/log A + log log n)

Jin DISC "21] sub-linear MPC rounds

[Ghaffari, Grunau, 1 + € approximate b-matching in O(log log Aavg)

Mitrovic SPAA ’22] near-linear MPC rounds

Our Results

Q1. Is there an efficient LOCAL algorithm for allocation that runs fast in sparse graphs?

Theorem 1

There exists a LOCAL algorithm for allocation that runs

In O_(log) rounds

Q2. Can such algorithms be implemented efficiently in sub-linear MPC?

Theorem 2

The allocation algorithm can be implemented In

O.(y/log) sub-linear MPC rounds

Overall pipeline

Proof of
fast
approximation
Rounding and
Fractional Algorithm of boosting to Integ rall
Allocation [AMZ ICML 18] integral Allocation

matching

Sampling
needed

to sparsify
Z Y < G for MPC

The Allocation Algorithm

C, There exists a global “preference”
for the advertisers

X1 & Py - B, € (0,00) for each advertiser v such that

2

assigning Xx,, < p,
X, , X [. .
2o C gives a 1 + ¢ approximate matching

3

X, = Py
xu,a X ﬁa C HV 2 ﬁv’
. (u,v)EXIStS

n Users a Advertisers

The Allocation Algorithm

C, There exists a global “preference”
for the advertisers

p, € (0,00) for each advertiser v such that

CZ
assigning x,, « p,
C gives a 1 + ¢ approximate matching
3
X, . = by
C - 2 ﬁv’
. (u,v)EXIStS

n Users a Advertisers

The Allocation Algorithm

— Start with ﬁv =1 Vv

n Users a Advertisers

The Allocation Algorithm

C
! —» Startwith g =1 Vv

. — (Check how it does locally
2

Cs

C

n Users a Advertisers

The Allocation Algorithm

C
! —» Startwith g =1 Vv
. — (Check how it does locally
2
— Change p, by 1 + € factor
&
C

n Users a Advertisers

The Allocation Algorithm

; - Startwithp =1 Vv

C, —> Check how it does locally
- Change f, by 1 + € factor

“ —> Repeat T times

C

n Users a Advertisers

The Allocation Algorithm
User Round

n Users a Advertisers

The Allocation Algorithm

User Round
Cl
B — Each user u gets current f,, from neighbours
Pa
C2
&
C

n Users a Advertisers

The Allocation Algorithm
User Round

— Each user u gets current f,, from neighbours

C2 ﬁv

—- Compute x, , =
| Zﬁv’

n Users a Advertisers

The Allocation Algorithm

User Round
Cl
X, | — Each user u gets current f,, from neighbours
xu,2 C2 ﬂ
— Compute x,, , = —
Z ﬁv’
&
Xy —> Send x, ,tov
C

n Users a Advertisers

The Allocation Algorithm

Advertiser Round

—> Receive x|
X ,

%

x2,v C

Y%

n Users a Advertisers

The Allocation Algorithm

Advertiser Round

—> Receive x|

‘/ C - Compute alloc, = Z Xy
V

n Users a Advertisers

The Allocation Algorithm

Advertiser Round

—> Receive x

‘/ C - Compute alloc, = Z Xy
V

— ifalloc, < C,/(1 + ¢)

increase p, by 1 + € factor
else if alloc, > C (1 + €)

decrease p, by 1 + € factor
n Users a Advertisers

The Allocation Algorithm

Advertiser Round

—> Receive x

C — (Compute alloc, = Z X

u,v

— ifalloc, < C,/(1 + ¢)

increase p, by 1 + € factor
else if alloc, > C (1 + €)

decrease p, by 1 + € factor

n Users a Advertisers
— Send f,

The Allocation Algorithm |
Advertiser Round

Receive x, ,

‘/ C Compute alloc, = Z Xy
V

if alloc, < C,/(1 + ¢
- (1+¢)

under-allocation

increase p, by 1 + € factor

over-allocation - else if alloc, > C (1 + €)

decrease p, by 1 + € factor

n Users a Advertisers
Send [,

The Allocation Algorithm

User Round Advertiser Round

—> Receive x

Each user u gets current p,,
from neighbours — Compute alloc, = Z X

u,v
— Compute x,, , = Py —-
Sy if alloc, < C,/(1 + €)
V

increase p, by 1 + € factor

—- Send x, ,toV
v else if alloc, > C,(1 + ¢€)

decrease p, by 1 + € factor

— Send f,

The Allocation Algorithm
Last Round

If alloc, > C,

‘/ C. Rescale x,, , so that alloc, = C,
V

x,, < x,,/max(l,alloc,/C)

Feasible matching guaranteed

n Users a Advertisers

Study Allocation / Capacity ratio

Proof of approximation

Current ratio

1 + 3¢
How does over/under allocation
for a fixed advertiser
change with time? 1 +¢

Claim

» X, 1» alloc,/C, change by
1 + O(e) factor each round

Study Allocation / Capacity rati
Proof of approximation udy Allocation /- Lapacity ratio

Current ratio

1 + 3¢

Study Allocation / Capacity ratio

Proof of approximation

Current ratio

1 + 3¢

alloc, = 2 Xy g

new

1 2
alloc,” €| 2,(1 + ¢)“] - alloc,,

(1 +¢)

1 — 3¢

Proof of approximation

alloc,/C, € [1 —¢€,1 + €]

1 + 3¢

Next upper bound

V Currentlrat;Jl_ €
1
1 —¢
Xy = ﬁv Next lower bound
| Zﬁv’ 1 — 3¢

alloc, = Z Xy g

Case 1: Blue region

Case 2: Purple region

Proof of approximation

alloc,/C, € [1 —3¢,1 +3¢]\[] —¢€,] + €]

1 + 3¢
Next upper bound
1 +¢
V
|
l —¢
ﬁ Next lower bound
v
X — .
u,v Current ratio
Z ﬁ V, 1 —_— 3 &

alloc, = Z Xy g

Case 2: Purple region

Proof of approximation No escaping the good region!

1 + 3¢
Next upper bound
l +¢
V
|
|l —¢
ﬁ Next lower bound
v
X, ., = i
TR Current ratio
Z ﬁv’ 1 — 3¢

alloc, = Z b

Partition the advertisers according to their final priority values

1 (146

) (

(1+e)l!

) (

(

)

(1 +¢)

(

)

(

(1+e)!

(

)

(1 n €)—T+1

9 (1+e)!

Partition the advertisers according to their final priority values

ZLr

)

) (

) (

C

)

(

)

(

(

)

(1+¢)!

(1+e)'!

(1 +¢)

(1+e)!

(1 4 6)_T+1

- Severely under-allocated

alloc,/C, € [1/(1 + 3¢), (1 + 3¢)]

Claim

Except first and last set, rest are

*almost perfectly” allocated

(1+e) "

- Severely over-allocated

Analysis of approximation

- =2
/ Jd+e How could this matching be bad?
/;\ 1+ e
‘ —~
‘ W
\?/ (Lo
1 (1+e) !

Analysis of approximation

T
/ e (1+e€) How could this matching be bad?

/;\ 1 +eo™!
®
‘ °
\?/ | (14 o) T

A (1+¢e)!

[(Z;) I g

must be badly matched

Analysis of approximation

T
/.\/ § (I+e) How could this matching be bad?
N T—1
@ jd+e) k= IT(Z))|
®
‘ °
\?/ | (14 o) T
A (1+¢e)!
(<) I g

must be badly matched

Analysis of approximation

T
/.\/ § (I+e) How could this matching be bad?
o T—1
® g (1+¢ k= |T(Z)]
@ . .
B GOT = matching of the algorithm
¢ J
\?/ | (1 +e) T
o 0 (1+e)!
[(Zp) I g

must be badly matched

Analysis of approximation

How could this matching be bad?

/ (1 + €)T

® g 1+ k= (&)

@ . .
B GOT = matching of the algorithm

’ c
" Claim

@ (1 4 ¢)~T+!

U - GOT > k(1 —¢) gets 2 + O(¢e)-approx
0 (1+e)!

['(Z7) C 7 .

must be badly matched

Analysis of approximation

/ (1 T G)T
/;\ : (1 T G)T_l Claim
® GOT > k(1 —¢) gets 2 + O(e)-approx
@ - . . .
B Where did our algorithm assign
\?/] (14! [(ZL)?
. 1 1+e)!
(T) — g_T

must be badly matched

Analysis of approximation

/ (1 T G)T
/;\ : (1 T G)T_l Claim
® GOT > k(1 —¢) gets 2 + O(e)-approx
@ - . . .
-~ Where did our algorithm assign
\?/] (14 [(ZL)?
. 1 1+e)!
(T) — g_T

must be badly matched

Claim

Analysis of approximation
o GOT 2> k(1 —€) gets 2 + O(¢)-approx
T

Casel: |ZL_,| >k

/;\ 1 (1 +)
@ GOT > k
@ i alloc, = C, after rescaling
\?/ (1 +¢)" T+
N A (1+¢e)!
(T) — g_T

must be badly matched

Bounding the optimum

Assume: | ZL_,| <k

i

Claim
x <1 Every edge to £ _; has weight
® <(1+e 2T
¢ y<(1+e)?
\?/ —
Z_r

['(Z7)

must be badly matched

Bounding the optimum
. Assume: | Z_+| <k
T

/ : (1+ G)T
/;\
® x <1 Matching sentto & _ < |E[(1 +¢)™*"

N
¢ y<(A4+e)?
\?/ —

21
i)

['(Z7)

must be badly matched

Bounding the optimum
Assume: | ZL_,| <k

/ (1+ G)T
/;\
x <1 Matching sentto & _ < |E[(1 +¢)™*"
® 0
® y<(1+e)2 El < ks
\?/ —
21

['(Z7)

must be badly matched

Bounding the optimum
Assume: | Z_,| <k

~ ZLr
/ (I + G)T
r<l Matching sentto & _ < |E[(1 +¢)™*"
¥ N
y<d+e)7 |E| < 4kA
_/ N Matching sent to SZ_T < 4kAM(1 4+ e
21

['(Z7)

must be badly matched

Bounding the optimum
Assume: | Z_,| <k
27
/\/ (1 T G)T

rsl Matching sentto & _ < |E[(1 +¢)™*"
&N
y<d+e)7 |E| < 4kA
_/ __ Matching sentto &£_, < 4kA(1 + €)=
g—T
< ke

(<)
must be badly matched I'= 0.1 +log4)

Claim

Analysis of approximation
o GOT 2> k(1 —€) gets 2 + O(¢)-approx
T

Assume: | &£ _,| <k
(1+e)'"

) i

@
N Matching sentto £ _, < ke
@ J
0 GoT > X =
| (L +e) ~ (1 + 3¢)
1 1+e)!
I'(Z7) S &
—T

must be badly matched

Bounding the optimum

~ ZLr TIGHT — Total capacity
/ Jd+er ~ excluding &
/;\ Ja+e OPT < TIGHT + &
‘ =
® : GOT > TIGHT/(1 + 3¢)
\?/ L+ ™ 2GOT > (TIGHT + b/(1 + O(e))
A+ GOT > OPT/(2 + O(¢))
1—-‘(<>?T) — % T ¢
—T

k vertices

Bounding the optimum

Iy TIGHT — Total capacity
/ Jd+er ~ excluding &
/;\ Ja+e OPT < TIGHT + &
‘ =
e : GOT > TIGHT/(1 + 3¢)
\?/ L+ ™ 2GOT > (TIGHT + b/(1 + O(e))
A+ GOT > OPT/(2 + O
o) Jare > OPT/(2 + O(e))
k vertices -

Can be boosted to 1 + € using [GGM18]

Simulation in MPC

Put » hop-neighbourhoods inside each machine
r rounds of LOCAL can be simulated!

Size>n?

Random Thresholding

Approximation argument perspective

if alloc, < C,/(1 + ¢)

increase p, by 1 + € factor

Random Thresholding

Approximation argument perspective

if alloc, < C,/(1 + ¢)

increase p, by 1 + € factor

Does this need to be strictly €7

e < |e/2,e]

Does 1t need to be same for all vertices

and rounds?
€,, < [e/2,€]

Random Thresholding

Approximation argument perspective Algorithm design perspective

if alloc, < C /(1 + ¢) alloc, — 1 + ¢ approx of alloc,

increase p, by 1 + € factor

Does this need to be strictly €7
e < |e/2,e]
— o
Does it need to be same for all vertices
and rounds?

€,, < [e/2,€]

Bucketing + uniform sampling does the trick

Bu=D X,

f. changes by factor (1 + €)

Zi={v|p el +e),(1+eh)

Uniformly sampling from £ is enough!

r —hop neighbourhood has size 20

Open Problems

Can our results be extended to b—matching problem?

Can we get dependence on average degree instead?

