
Toward Optimal Semi-streaming Algorithm for
(1+ε)-approximate Maximum Matching

Anish Mukherjee
(University of Warwick)

Slobodan Mitrović
(UC Davis)

Piotr Sankowski
(University of Warsaw)

Wen-Horng Sheu
(UC Davis)

1

Maximum matching problem

• Let G = (V, E) be an unweighted graph

• A matching is a set of edges that do not share an endpoint

• Goal: Find the largest matching

2

Pr ior work

• The problem is extensively studied in different settings:
• Polynomial time: [Berge ‘57] [Edmonds ‘65] [Hopcroft, Karp ‘73] [Micali, Vazirani ‘80]

[Gabow ‘90] [Kalantari, Shokoufandeh ‘95] …
• Estimating size in streaming: [Kapralov, Khanna, Sudan ‘14] [Assadi, Khanna, Li ‘17]

[Kapralov, Mitrović, Norouzi-Fard, Tardos ‘20] …
• Dynamic: [Bernstein, Stein ‘16] [Solomon ‘16] [Bhattacharya, Kulkarni ‘19]

[Behnezhad, Łącki, Mirrokni ‘19] [Behnezhad, Khanna ‘22] …
• Semi-streaming: [McGregor ‘05] [Ahn, Guha, '11] [Eggert, Kliemann, Munstermann,

Srivastav, '12] [Ahn, Guha, '13] [Kapralov, '13] [Ahn, Guha, '18] [Tirodkar, '18] [Gamlath,
Kale, Mitrović, Svensson, '19] [Assadi, Liu, Tarjan, '21] [Assadi, Jambulapati, Jin,
Sidford, Tian, '22] [Fischer, Mitrović, Uitto, '22] [Huang, Su, '23] [Assadi, '24]

3

Semi-streaming sett ing

• No random access to the input graph
• Edges are presented as a stream, arriving in arbitrary order
• Reading the stream once is called a pass

• The algorithm can use O(n poly log n) memory.
• Allowed to make multiple passes over the stream.

• Goal: minimize the number of passes
• Problem: finding a (1+ε)-approximate maximum matching

(on general graphs)

4

Pr ior work

• "Constant number" of passes is achievable
• [McGregor ‘05]: (1/ε)O(1/ε) passes

• Dependence on ε has been improved since then

• Two classes of graphs:
• bipartite
• general

• Two families of studies:
• constant-pass: complexity only depends on 1/ε (our focus)
• ε-efficient: complexity depends on log n and 1/ε

5

Pr ior work (bipart ite)

Weighted?PassSource
(1/ε)O(1/ε)[McG, 2005]

1/ε8[EKS, 2009]

1/ε5[EKMS, 2012]

Yes1/ε5  log(1/ε)[AG, 2013]

1/ε2 (vertex arrival)[Kap, 2013]

Yeslog(n) / ε[AG, 2018]

1 / ε2[ALT, 2021]

log(n) / ε  log(1/ε)[AJJST, 2022]

Yeslog(n) / ε[Ass, 2024]

• poly(1/ε) is known since 2009 [Eggert, Kliemann, Munstermann, Srivastav]

6

Pr ior work (general)
Weight?PassSource

(1/ε)O(1/ε)[McG, 2005]
log(n) / ε7  log(1/ε)[AG, 2011]

Yeslog(n) / ε4[AG, 2013]
Yeslog(n) / ε[AG, 2018]

exp(1/ε)[Tir, 2018]
Yesexp(1/ε2)[GKMS, 2019]

1/ε19[FMU, 2022]
Yespoly(1/ε) but > 1/ε19[HS, 2023]
Yeslog(n) / ε[Ass, 2024]

• poly(1/ε) is only known recently
[Fischer, Mitrović, Uitto, 2022]

• Huge gap between bipartite and
general graphs

• Bipartite graphs: 1/ε2 passes [ALT21]

• General graphs: 1/ε19 passes [FMU22]

7

Our result
Weight?PassSource

(1/ε)O(1/ε)[McG ‘05]
log(n) / ε7  log(1/ε)[AG11]

Yeslog(n) / ε4[AG13]
Yeslog(n) / ε[AG18]
Yeslog(n) / ε[AG18]

exp(1/ε)[Tir18]
Yesexp(1/ε2)[GKMS19]

1/ε19[FMU22]
Yesmore than 1/ε19[HS23]
Yeslog(n) / ε[Ass24]

• A 1/ε6-pass algorithm

• Bridging the gap between
bipartite and general graphs

• Simpler approach

• Simpler analysis

1/ε6[this talk]
8

Remark: other models

• Our algorithm can be simulated in other computational models

• Improve round complexity in MPC and CONGEST models by ε-13 factor

9

Warm-up:
Bipartite graphs

Based on [Eggert, Kliemann, Munstermann, Srivastav ’12]

10

Def in i t ion

11

• Free node: unmatched vertex

• Alternating path: path alternates between matched and unmatched edges

• Augmenting path: alternating path from a free node to another

Start ing p oint - short au gment ing paths

[Kalantari, Shokoufandeh ‘95] [McGregor ‘05] [Eggert, Kliemann, Munstermann, Srivastav ‘12]

Let M be a matching and Y be an inclusion-maximal set of
2/ε- long augmenting paths. If |Y| < ε2|M|/6, then M is a
(1+ε)-approximate maximum matching.

Cla im

12

Id ea : Execute truncated DFS from free nodes.

13

Matched

Unmatched

v u

Id ea : Execute truncated DFS from free nodes.

∞

∞

∞ ∞

Each matched edge
has a distance label.

14

Matched

Unmatched

v u

Id ea : Execute truncated DFS from free nodes.

∞

∞

∞ ∞

Each matched edge
has a distance label.

• Meaning of label: current shortest distance
• Each free node maintains an active path

(DFS search path)

15

v u

1 1

Id ea : Execute truncated DFS from free nodes. Matched

Unmatched

∞

∞

Each matched edge
has a distance label.

• Meaning of label: current shortest distance
• Each free node maintains an active path

(DFS search path)

Each pass: Extend by length-2 paths
• Scan unmatched edges
• Extend when distance label can be reduced

16

v u

1 1

stuck

2

Id ea : Execute truncated DFS from free nodes. Matched

Unmatched

2nd pass

∞

Each matched edge
has a distance label.

• Meaning of label: current shortest distance
• Each free node maintains an active path

(alternating path)

Each pass: Extend by length-2 paths
• Scan unmatched edges
• Extend when distance label can be reduced
• Backtrack if stuck

17

v u

1 1

1

Id ea : Execute truncated DFS from free nodes. Matched

Unmatched

u overtakes from v

3rd pass

∞

Each matched edge
has a distance label.

• Meaning of label: current shortest distance
• Each free node maintains an active path

(alternating path)

Each pass: Extend by length-2 paths
• Scan unmatched edges
• Extend when distance label can be reduced
• Backtrack if stuck
• Can overtake another path to reduce label

2

18

v u

1 1

1

Id ea : Execute truncated DFS from free nodes. Matched

Unmatched

3rd pass

∞

Each matched edge
has a distance label.

• Meaning of label: current shortest distance
• Each free node maintains an active path

(alternating path)

Each pass: Extend by length-2 paths
• Scan unmatched edges
• Extend when distance label can be reduced
• Backtrack if stuck
• Can overtake another path to reduce label

u overtakes from v

19

v u

1 1

1

Augmentation

Id ea : Execute truncated DFS from free nodes. Matched

Unmatched

4th pass

∞

Each matched edge
has a distance label.

• Meaning of label: current shortest distance
• Each free node maintains an active path

(alternating path)

Each pass: Extend by length-2 paths
• Scan unmatched edges
• Extend when distance label can be reduced
• Backtrack if stuck
• Can overtake another path to reduce label

20

Analysis

• Run in poly(1/ε) passes

• Find an "almost" maximal set of short augmenting paths

Id ea : Execute truncated DFS from free nodes. Matched

Unmatched

Each matched edge
has a label.

v u

1 1

1

Augmentation

4th pass

∞

Why poly(1/ε) passes?

1. Each matched edge changes label at most 1/ε times
 at most O(|M| 1/ε) label changes and backtrack

2. Stop when < ε2|M| active free nodes
 at least θ(ε2|M|) label changes/backtrack in each pass

3. O(1/ε3) passes

Id ea : Execute truncated DFS from free nodes. Matched

Unmatched

Each matched edge
has a label.

v u

1 1

1

Augmentation

4th pass

∞

General graphs
Free node can block itself due to odd cycles

23

General graphs: tricky example

u

Augmentation

a

∞

Goal: find this augmentation

Matched

Unmatched

e

24

General graphs: tricky example

u

2

a

Augmentation

Matched

Unmatched

e

25

General graphs: tricky example

u 2

1

a

Augmentation

Matched

Unmatched

e

26

General graphs: tricky example

u 2

1

a

blocked by itself

Augmentation

Matched

Unmatched

e

27

General graphs: tricky example

u 2

1

a

backtrack
Augmentation

Matched

Unmatched

e

28

General graphs: tricky example

u 21 2

a

1

c

Cannot extend due to small label

Augmentation

Matched

Unmatched

e

29

General graphs: tricky example

u 21 2

a

1

c

Cannot extend due to small label
 augmentation is never found

Augmentation

Matched

Unmatched

e

30

General graphs: trickier example

u

Augmentation

21 2

a

1

bc

[FMU]'s approach:
Store all visited vertices and edges

to detect odd cycles

Matched

Unmatched

General graphs: trickier example

u

Augmentation

42 4

a

1

bc

“jump” through odd cycles

Matched

Unmatched

General graphs: our approach

33

Id ea : Maintain alternating trees

u

• Each free node grows alternating trees
• Trees are vertex-disjoint

34

Id ea : Maintain alternating trees

u

active path

• Each free node grows alternating trees
• Trees are vertex-disjoint
• Each tree has an active path

35

Id ea : Maintain alternating trees

• Each free node grows alternating trees
• Trees are vertex-disjoint
• Each tree has an active path

• Even layers: outer vertices
• Odd layers: inner vertices

• Root: outer vertex

0

1

2

3

4

outer

inner

u

36

• Read edges (w, v) from stream
• Focus on edges from an active path

u

w v

active path

Id ea : Maintain alternating trees

37

• Read edges (w, v) from stream
• Focus on edges from an active path

Case 1: v is not in any tree  Extend

u

vw

Id ea : Maintain alternating trees

38

u

v

Case 1: v is not in any tree  Extend

Case 2: v is an inner vertex  Overtake
(Also take the subtree of v)

w

• Read edges (w, v) from stream
• Focus on edges from an active path

Id ea : Maintain alternating trees

39

u

v

Case 1: v is not in any tree  Extend

Case 2: v is an inner vertex  Overtake
(Also take the subtree of v)

w

• Read edges (w, v) from stream
• Focus on edges from an active path

Id ea : Maintain alternating trees

40

Case 1: v is not in any tree  Extend

Case 2: v is an inner vertex  Overtake
(Also take the subtree of v)

Case 3: v is an outer vertex of another tree
 Augmentation found
(remove both trees)

u

v

w

• Read edges (w, v) from stream
• Focus on edges from an active path

Id ea : Maintain alternating trees

41

u

w

• Read edges (w, v) from stream
• Focus on edges from an active path

Case 1: v is not in any tree  Extend

Case 2: v is an inner vertex  Overtake
(Also take the subtree of v)

Case 3: v is an outer vertex of another tree
 Augmentation found
(remove both trees)

Case 4: v is an outer vertex of the same tree??
(odd cycle!)

v

Id ea : Maintain alternating trees

42

Let T be an alternating tree. An edge connecting
two outer vertices of T forms a blossom

Cla im (part 1) [Edmonds, 1965] u

B
Def in i t ion

A blossom is a subgraph that forms an odd cycle
with exactly one unmatched vertex

wv

Id ea : Blossom contraction

43

By contracting such a blossom, T remains an
alternating tree.

u

Cla im (part 2) [Edmonds, 1965]

B
wv

44

Analys i s

Find "almost" maximal set
of short augmenting paths

45

A tree cannot “grow”
beyond poly(1/ε)

(Recall that a tree is
removed after an augmentation.)

Idea: A tree gets frozen when its size reaches 2.

So, no tree goes beyond ?

A tree cannot “grow” beyond
poly(1/ε)



x

46

Idea: A tree gets frozen when its size reaches 2.

So, no tree goes beyond ?

A tree cannot “grow” beyond
poly(1/ε)



x

x2



47

Idea: A tree gets frozen when its size reaches 2.

So, no tree goes beyond ?

A tree cannot “grow” beyond
poly(1/ε)



x

x2



x4





48

Idea: A tree gets frozen when its size reaches 2.

So, no tree goes beyond ?

A tree cannot “grow” beyond
poly(1/ε)



x

x2



x4



....

1



3



49

Idea: A tree gets frozen when its size reaches 2.

So, no tree goes beyond ?

A tree cannot “grow” beyond
poly(1/ε)



x

x2



x4



....

1



3



Chain of overtake has length  ε



50

Open quest ions

Improving the poly-dependence on .

b-matching in ?

Further simplification of the current approach

51

52

