Toward Optimal Semi-streaming Algorithm for (1+ε)-approximate Maximum Matching

Slobodan Mitrović (UC Davis) Anish Mukherjee (University of Warwick) Piotr Sankowski (University of Warsaw)

Wen-Horng Sheu (UC Davis) Maximum matching problem

- Let *G* = (*V*, *E*) be an **unweighted** graph
- A *matching* is a set of edges that do not share an endpoint
- Goal: Find the largest matching

Prior work

- The problem is extensively studied in different settings:
- **Polynomial time:** [Berge '57] [Edmonds '65] [Hopcroft, Karp '73] [Micali, Vazirani '80] [Gabow '90] [Kalantari, Shokoufandeh '95] ...
- Estimating size in streaming: [Kapralov, Khanna, Sudan '14] [Assadi, Khanna, Li '17] [Kapralov, Mitrović, Norouzi-Fard, Tardos '20] ...
- Dynamic: [Bernstein, Stein '16] [Solomon '16] [Bhattacharya, Kulkarni '19] [Behnezhad, Łącki, Mirrokni '19] [Behnezhad, Khanna '22] ...
- Semi-streaming: [McGregor '05] [Ahn, Guha, '11] [Eggert, Kliemann, Munstermann, Srivastav, '12] [Ahn, Guha, '13] [Kapralov, '13] [Ahn, Guha, '18] [Tirodkar, '18] [Gamlath, Kale, Mitrović, Svensson, '19] [Assadi, Liu, Tarjan, '21] [Assadi, Jambulapati, Jin, Sidford, Tian, '22] [Fischer, Mitrović, Uitto, '22] [Huang, Su, '23] [Assadi, '24]

Semi-streaming setting

- No random access to the input graph
- Edges are presented as a stream, arriving in arbitrary order
- Reading the stream once is called a pass
- The algorithm can use **O(n poly log n)** memory.
- Allowed to make multiple passes over the stream.
- **Goal:** minimize the number of passes
- Problem: finding a (1+ε)-approximate maximum matching (on general graphs)

Prior work

- "Constant number" of passes is achievable
- [McGregor '05]: **(1/ε)**^{*O*(1/ε)} passes
- Dependence on ε has been improved since then
- Two classes of graphs:
 - bipartite
 - general
- Two families of studies:
 - constant-pass: complexity only depends on 1/ε (our focus)
 - ϵ -efficient: complexity depends on $\log n$ and $1/\epsilon$

Prior work (bipartite)

• poly(1/ε) is known since 2009 [Eggert, Kliemann, Munstermann, Srivastav]

Source	Pass	Weighted?
[McG, 2005]	(1/ε) ^{O(1/ε)}	
[EKS, 2009]	1/ε ⁸	
[EKMS, 2012]	1/ε ⁵	
[AG, 2013]	$1/\epsilon^5 \cdot \log(1/\epsilon)$	Yes
[Kap, 2013]	1/ε ² (vertex arrival)	
[AG, 2018]	log(<i>n</i>) / ε	Yes
[ALT, 2021]	1 / ε ²	
[AJJST, 2022]	$\log(n) / \epsilon \cdot \log(1/\epsilon)$	
[Ass, 2024]	log(n) / ε	Yes

Prior work (general)

- poly(1/ε) is only known recently
 [Fischer, Mitrović, Uitto, 2022]
- Huge gap between bipartite and general graphs
- Bipartite graphs: 1/ε² passes [ALT21]
- General graphs: 1/ε¹⁹ passes [FMU22]

Source	Pass	Weight?
[McG, 2005]	$(1/\epsilon)^{O(1/\epsilon)}$	
[AG, 2011]	log(<i>n</i>) / ε ⁷ · log(1/ε)	
[AG, 2013]	log(<i>n</i>) / ε ⁴	Yes
[AG, 2018]	log(<i>n</i>) / ε	Yes
[Tir, 2018]	exp(1/ε)	
[GKMS, 2019]	exp(1/ε²)	Yes
[FMU, 2022]	1/ε ¹⁹	
[HS, 2023]	poly(1/ ϵ) but > 1/ ϵ^{19}	Yes
[Ass, 2024]	log(<i>n</i>) / ε	Yes

Our result

- A 1/ε⁶-pass algorithm
- Bridging the gap between bipartite and general graphs
- Simpler approach
- Simpler analysis

		1
Source	Pass	Weight?
[McG '05]	(1/ε) ^{Ο(1/ε)}	
[AG11]	$\log(n) / \epsilon^7 \cdot \log(1/\epsilon)$	
[AG13]	log(<i>n</i>) / ε ⁴	Yes
[AG18]	log(<i>n</i>) / ε	Yes
[AG18]	log(<i>n</i>) / ε	Yes
[Tir18]	exp(1/ε)	
[GKMS19]	exp(1/ε²)	Yes
[FMU22]	1/ε ¹⁹	
[HS23]	more than 1/ ϵ^{19}	Yes
[Ass24]	log(<i>n</i>) / ε	Yes
[this talk]	1/ε ⁶	

8

Remark: other models

- Our algorithm can be simulated in other computational models
- Improve round complexity in MPC and CONGEST models by ϵ^{-13} factor

Warm-up: *Bipartite* graphs

Based on [Eggert, Kliemann, Munstermann, Srivastav '12]

Definition

- *Free node*: unmatched vertex
- *Alternating path*: path alternates between matched and unmatched edges
- *Augmenting path*: alternating path from a free node to another

Starting point - short augmenting paths

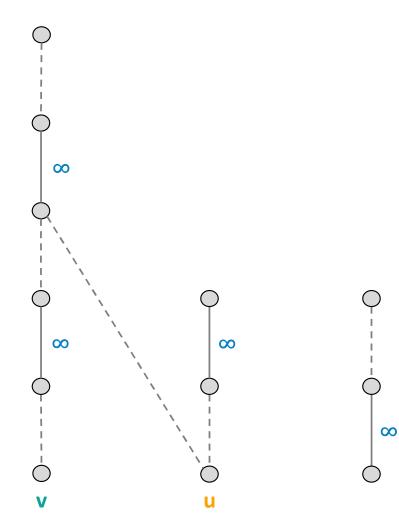
Claim

Let *M* be a matching and *Y* be an inclusion-maximal set of $2/\epsilon$ -long augmenting paths. If $|Y| < \epsilon^2 |M|/6$, then *M* is a $(1+\epsilon)$ -approximate maximum matching.

[Kalantari, Shokoufandeh '95] [McGregor '05] [Eggert, Kliemann, Munstermann, Srivastav '12]

Unmatched - - - - -

Each **matched** edge has a **distance label**.

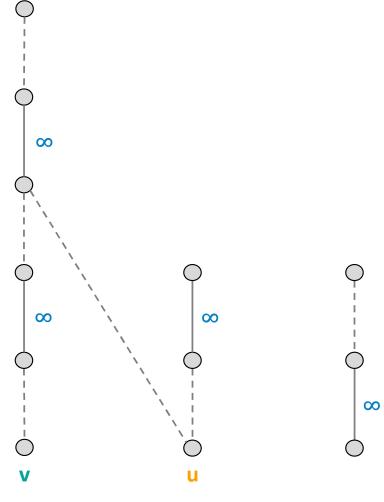


Matched

Unmatched - - - - -

Each **matched** edge has a **distance label**.

- Meaning of label: current shortest distance
- Each free node maintains an active path (DFS search path)



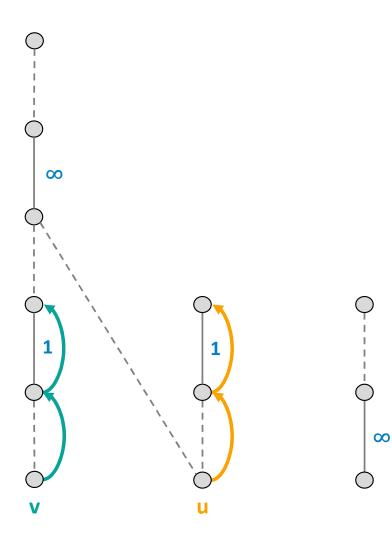
Matched

Unmatched - - - - -

Each **matched** edge has a **distance label**.

- Meaning of label: current shortest distance
- Each free node maintains an active path (DFS search path)

- Scan unmatched edges
- Extend when distance label can be reduced



 $\mathbf{\infty}$

Matched

Unmatched - - - - -

2nd pass 2 stuck 1 1

Each **matched** edge has a **distance label**.

- Meaning of label: current shortest distance
- Each free node maintains an **active path**

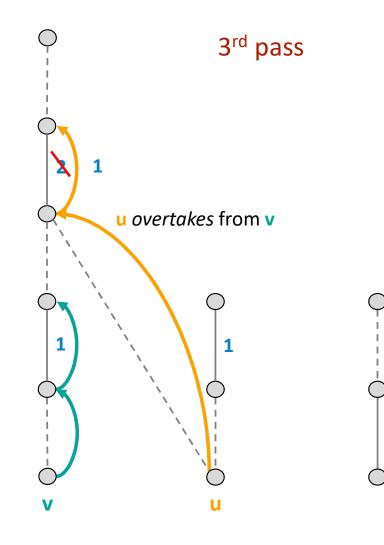
(alternating path)

- Scan unmatched edges
- Extend when distance label can be reduced
- Backtrack if stuck

 $\mathbf{\infty}$

Matched

Unmatched - - - - -



Each **matched** edge has a **distance label**.

- Meaning of label: current shortest distance
- Each free node maintains an **active path**

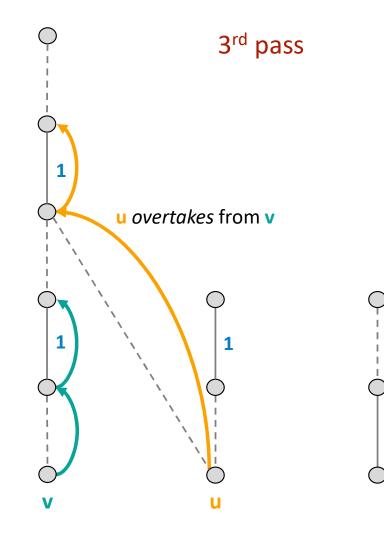
(alternating path)

- Scan unmatched edges
- Extend when distance label can be reduced
- Backtrack if stuck
- Can overtake another path to reduce label

 $\mathbf{\infty}$

Matched

Unmatched - - - - -



Each **matched** edge has a **distance label**.

- Meaning of label: current shortest distance
- Each free node maintains an **active path**

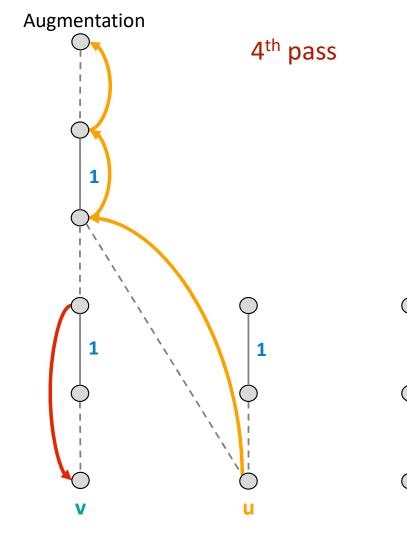
(alternating path)

- Scan unmatched edges
- Extend when distance label can be reduced
- Backtrack if stuck
- Can overtake another path to reduce label

 $\mathbf{\infty}$

Matched

Unmatched - - - - -



Each **matched** edge has a **distance label**.

- Meaning of label: current shortest distance
- Each free node maintains an **active path**

(alternating path)

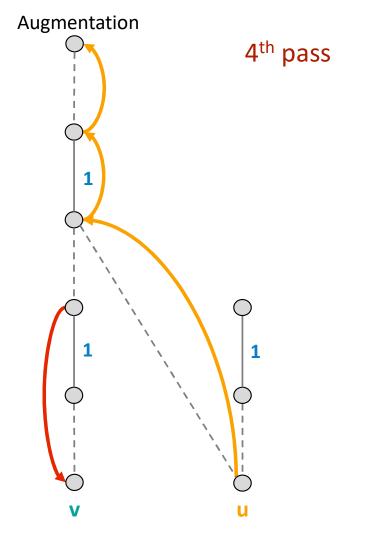
- Scan unmatched edges
- Extend when distance label can be reduced
- Backtrack if stuck
- Can overtake another path to reduce label

00

Unmatched ----

Each matched edge

has a label.



Analysis

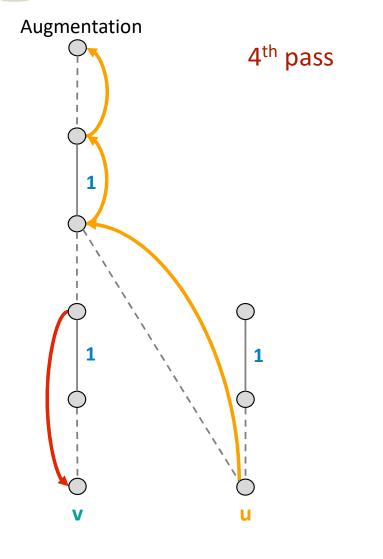
- Run in $poly(1/\epsilon)$ passes
- Find an "almost" maximal set of short augmenting paths

Matched

Unmatched ----

Each matched edge

has a label.

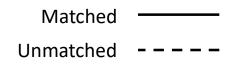


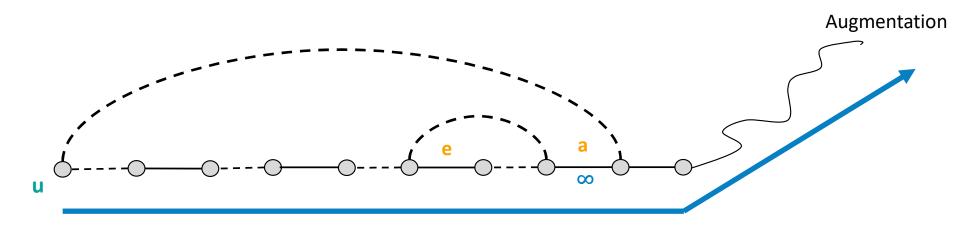
Why poly($1/\epsilon$) passes?

- 1. Each matched edge changes label at most $1/\epsilon$ times \rightarrow at most $O(|M| \times 1/\epsilon)$ label changes and backtrack
- 2. Stop when $< \epsilon^2 |M|$ active free nodes \rightarrow at least $\theta(\epsilon^2 |M|)$ label changes/backtrack in each pass
- 3. $O(1/\epsilon^3)$ passes

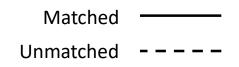
00

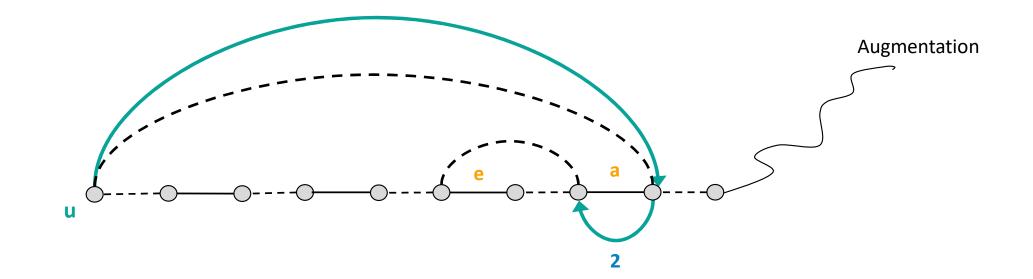
General graphs Free node can block itself due to odd cycles

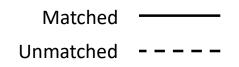


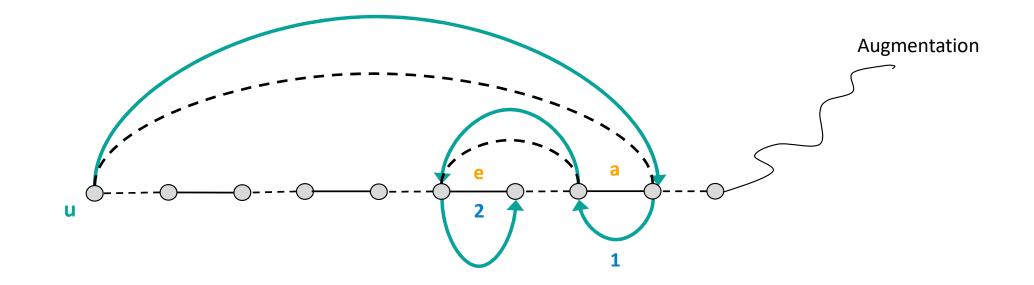


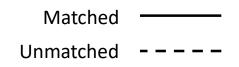
Goal: find this augmentation

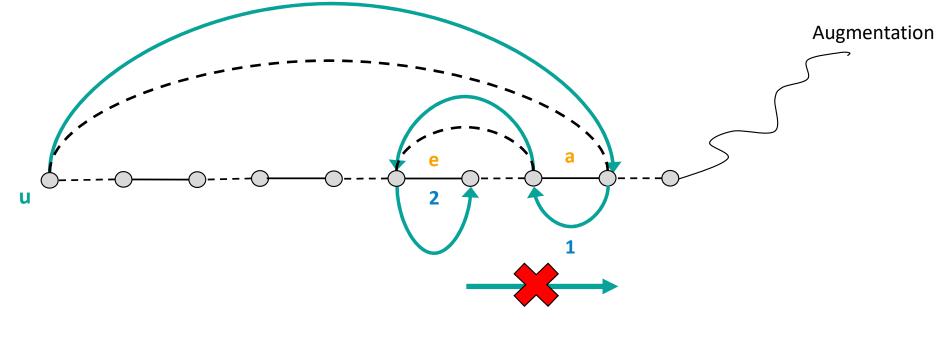




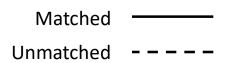


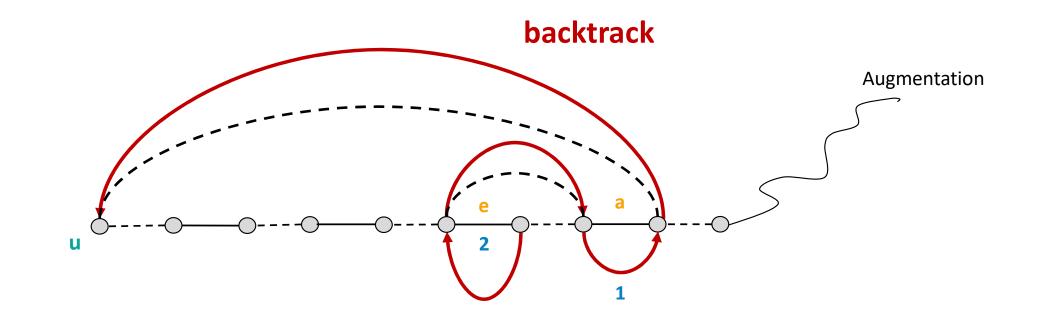


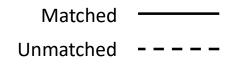


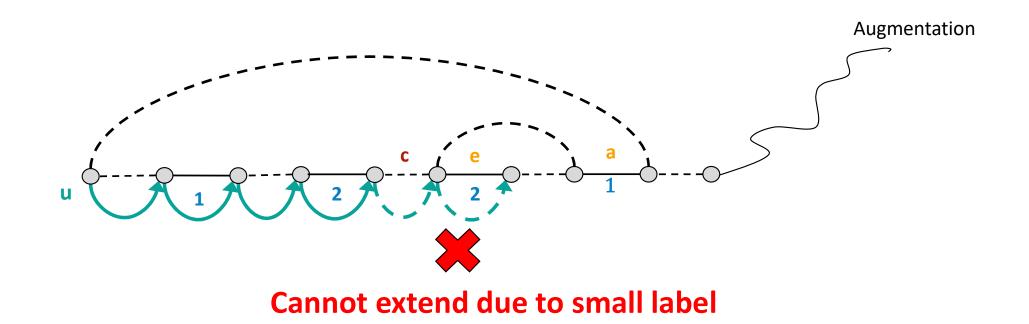


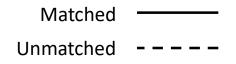
blocked by itself

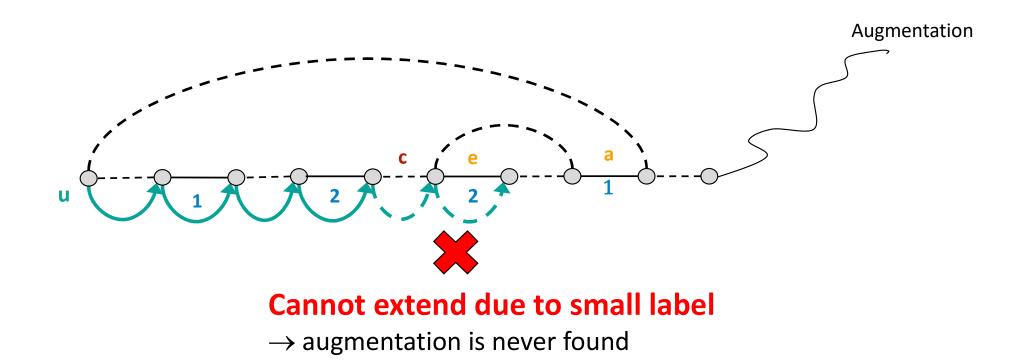


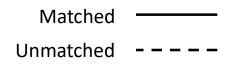


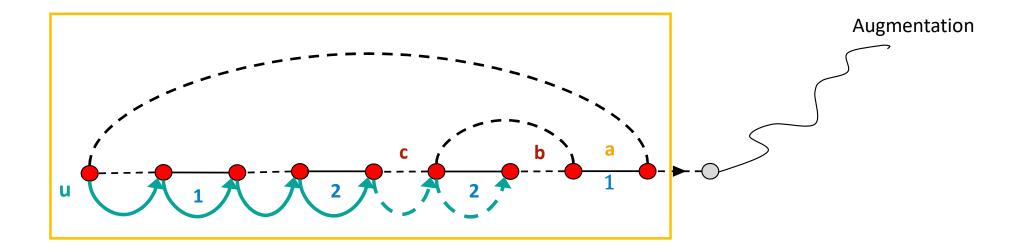




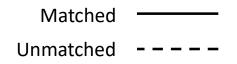


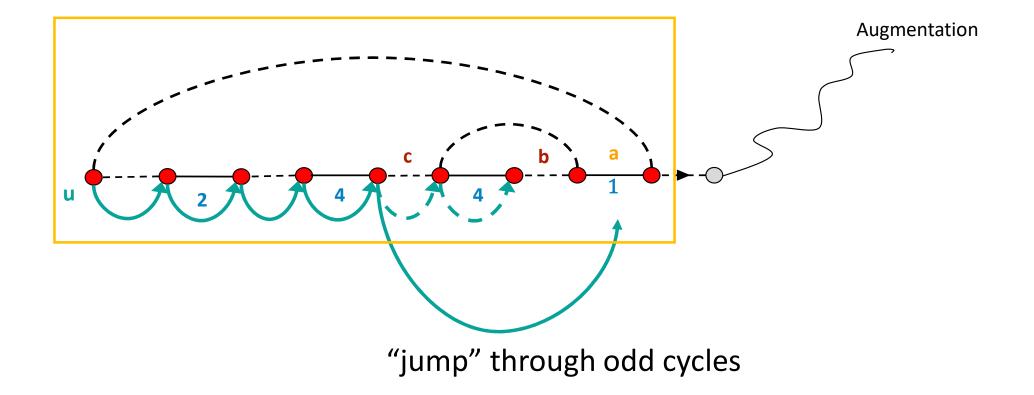






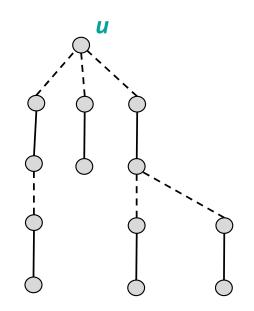
[FMU]'s approach: Store all visited vertices and edges to detect odd cycles



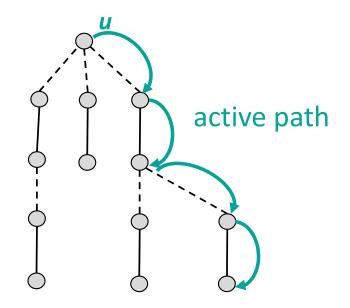


General graphs: our approach

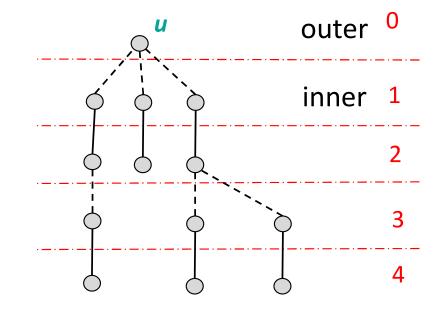
- Each free node grows alternating trees
- Trees are vertex-disjoint



- Each free node grows alternating trees
- Trees are vertex-disjoint
- Each tree has an active path

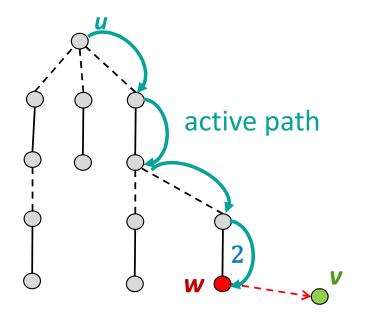


- Each free node grows alternating trees
- Trees are vertex-disjoint
- Each tree has an active path

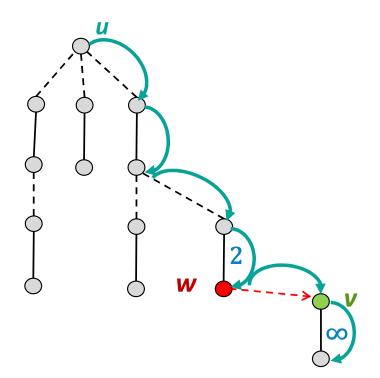


- Even layers: outer vertices
- Odd layers: inner vertices
- Root: outer vertex

- Read edges (*w*, *v*) from stream
- Focus on edges from an active path

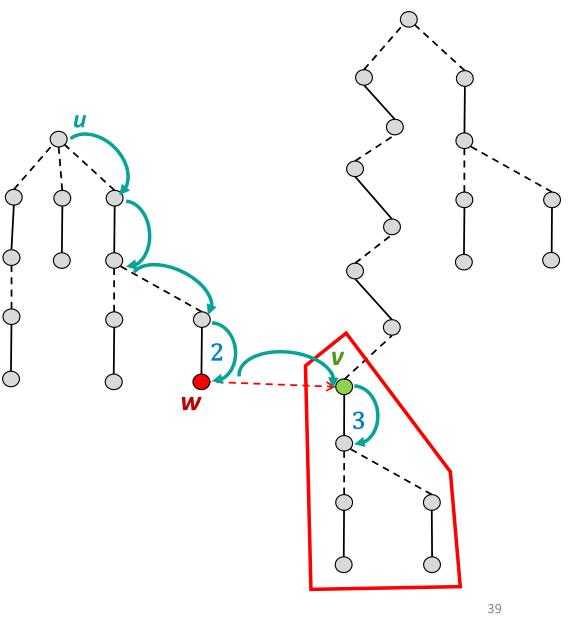


- Read edges (*w*, *v*) from stream
- Focus on edges from an active path



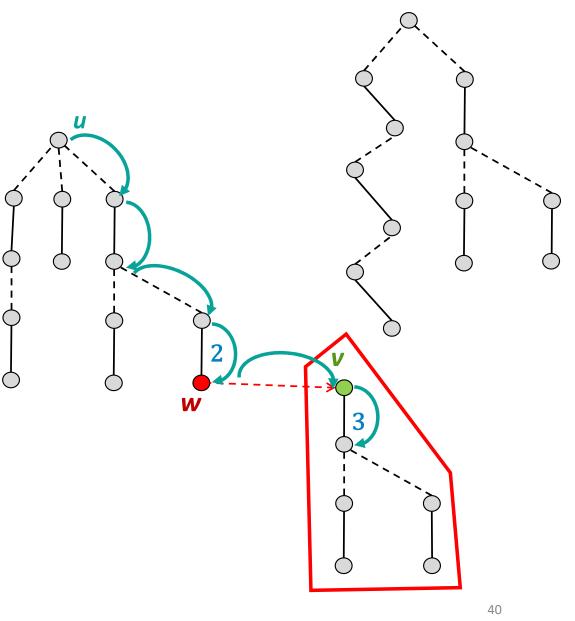
- Read edges (*w*, *v*) from stream
- Focus on edges from an active path

Case 2: v is an inner vertex \rightarrow **Overtake** (Also take the subtree of v)



- Read edges (*w*, *v*) from stream
- Focus on edges from an active path

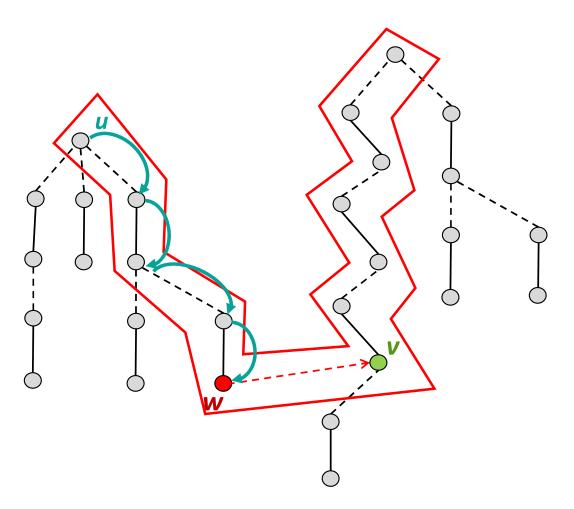
Case 2: v is an inner vertex \rightarrow **Overtake** (Also take the subtree of v)



- Read edges (*w*, *v*) from stream
- Focus on edges from an active path

Case 2: \mathbf{v} is an inner vertex \rightarrow **Overtake** (Also take the subtree of \mathbf{v})

Case 3: v is an outer vertex of another tree \rightarrow Augmentation found (remove both trees)

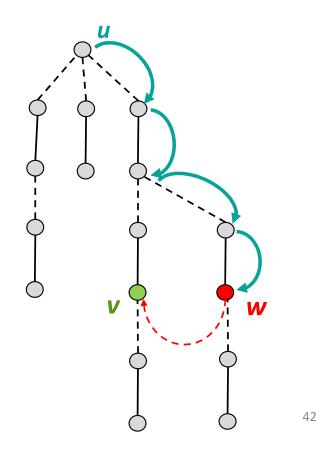


- Read edges (*w*, *v*) from stream
- Focus on edges from an active path

Case 2: v is an inner vertex \rightarrow **Overtake** (Also take the subtree of v)

Case 3: v is an outer vertex of another tree \rightarrow Augmentation found (remove both trees)

Case 4: **v** is an outer vertex of the same tree?? (odd cycle!)

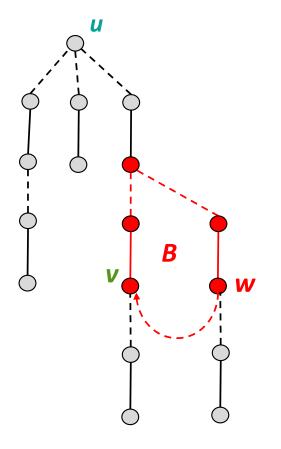


Claim (part 1) [Edmonds, 1965]

Let *T* be an alternating tree. An edge connecting two outer vertices of *T* forms a blossom

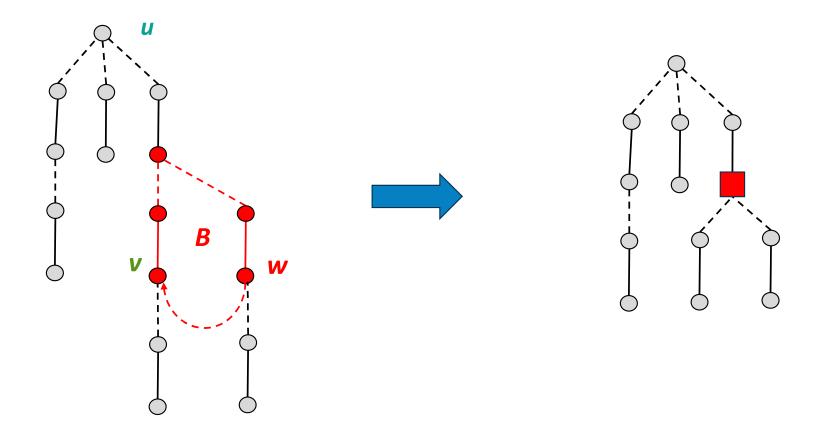
Definition

A blossom is a subgraph that forms an odd cycle with exactly one unmatched vertex



Claim (part 2) [Edmonds, 1965]

By contracting such a blossom, *T* remains an alternating tree.



Analysis

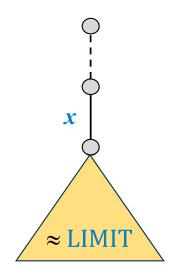
Find "almost" maximal set of short augmenting paths

A tree cannot "grow" beyond $poly(1/\epsilon)$

(Recall that a tree is **removed** after an augmentation.)

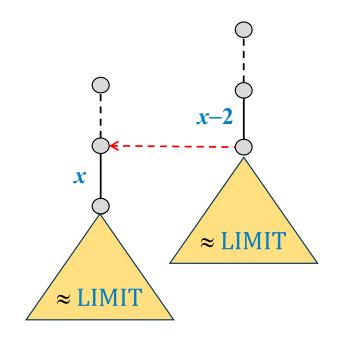
Idea: A tree gets frozen when its size reaches $LIMIT = 1/\epsilon^2$.

So, no tree goes beyond LIMIT?

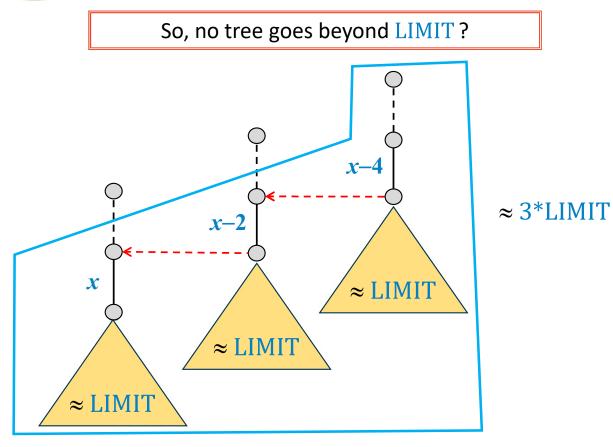


Idea: A tree gets frozen when its size reaches $LIMIT = 1/\epsilon^2$.

So, no tree goes beyond LIMIT?



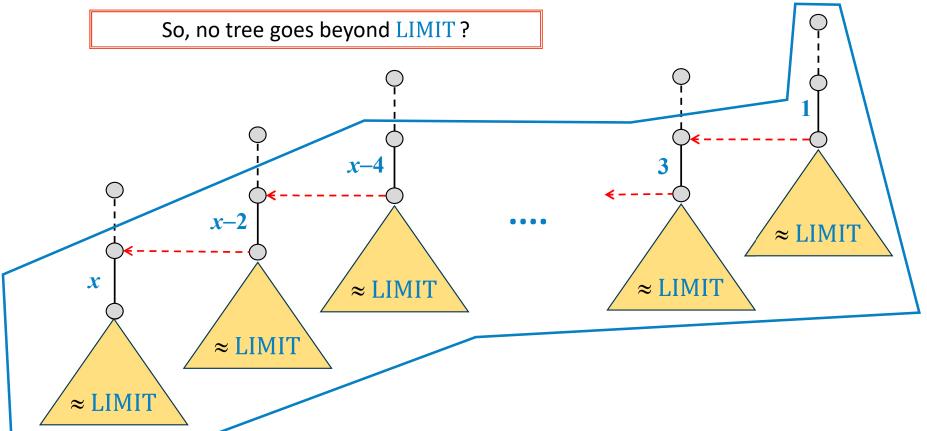
Idea: A tree gets frozen when its size reaches $LIMIT = 1/\epsilon^2$.

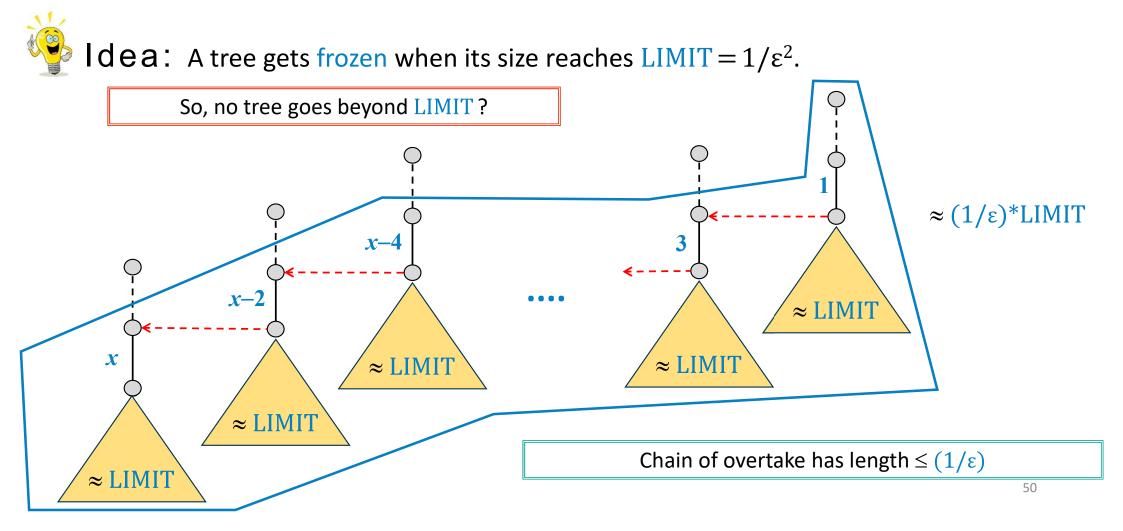


48

A tree cannot "grow" beyond poly(1/ε)

Idea: A tree gets frozen when its size reaches $LIMIT = 1/\epsilon^2$.





Open questions

Improving the poly-dependence on $1/\epsilon$.

Further simplification of the current approach

b-matching in $poly(1/\epsilon)$ passes in general graphs?

