Toward Optimal Semi-streaming Algorithm for
(1+€)-approximate Maximum Matching

Slobodan Mitrovic Anish Mukherjee Piotr Sankowski Wen-Horng Sheu
(UC Davis) (University of Warwick) (University of Warsaw) (UC Davis)



Maximum matching problem

 Let G =(V, E) be an unweighted graph
* A matching is a set of edges that do not share an endpoint

* Goal: Find the largest matching



Prior work

* The problem is extensively studied in different settings:

* Polynomial time: [Berge ‘57] [Edmonds ‘65] [Hopcroft, Karp ‘73] [Micali, Vazirani ‘80]
[Gabow ‘90] [Kalantari, Shokoufandeh ‘95] ...

* Estimating size in streaming: [Kapralov, Khanna, Sudan ‘14] [Assadi, Khanna, Li ‘17]
[Kapralov, Mitrovi¢, Norouzi-Fard, Tardos ‘20] ...

 Dynamic: [Bernstein, Stein ‘16] [Solomon ‘16] [Bhattacharya, Kulkarni ‘19]
[Behnezhad, tacki, Mirrokni ‘19] [Behnezhad, Khanna 22] ...

e Semi-streaming: [McGregor ‘05] [Ahn, Guha, '11] [Eggert, Kliemann, Munstermann,
Srivastav, '12] [Ahn, Guha, '13] [Kapralov, '13] [Ahn, Guha, '18] [Tirodkar, '18] [Gamlath,
Kale, Mitrovi¢, Svensson, '19] [Assadi, Liu, Tarjan, '21] [Assadi, Jambulapati, Jin,
Sidford, Tian, '22] [Fischer, Mitrovic¢, Uitto, '22] [Huang, Su, '23] [Assadi, '24]



Semi-streaming setting

* No random access to the input graph
* Edges are presented as a stream, arriving in arbitrary order
Reading the stream once is called a pass

The algorithm can use O(n poly log n) memory.
Allowed to make multiple passes over the stream.

* Goal: minimize the number of passes
Problem: finding a (1+&)-approximate maximum matching
(on general graphs)



Prior work

"Constant number" of passes is achievable
[McGregor ‘05]: (1/€)°*/2) passes

Dependence on € has been improved since then

Two classes of graphs:
* bipartite
e general

Two families of studies:
* constant-pass: complexity only depends on 1/< (our focus)
 g-efficient: complexity depends on log n and 1/¢



Prior work (bipartite)

* poly(1/€) is known since 2009 [Eggert, Kliemann, Munstermann, Srivastav]

Source Pass Weighted?
[McG, 2005] (1/€)0/e)
[EKS, 2009] 1/€8
[EKMS, 2012] 1/€>
[AG, 2013] 1/€> - log(1/¢) Yes
[Kap, 2013] 1/€2 (vertex arrival)
[AG, 2018] log(n) / € Yes
[ALT, 2021] 1/ &2
[AJIST, 2022] log(n) / € - log(1/¢)
[Ass, 2024] log(n) / € Yes 6




Prior work (general)

Source Pass Weight?
pqu(l/e) is.only. ,kno.wn recently [McG, 2005 (1/¢)00/e
[Fischer, Mitrovic, Uitto, 2022]
[AG, 2011] log(n) / €7 - log(1/¢)
Huge gap between bipartite and [AG, 2013] log(n) / &* Yes
general graphs [AG, 2018] log(n) / € Yes
[Tir, 2018] exp(1/¢)
Bipartite graphs: 1/e? passes [ALT21] [GKMS, 2019] exp(1/€2) Yes
[FMU, 2022] 1/€1?
General graphs: 1/'° passes [FMU22] 1S, 2023] | polv(1/e) but> 1/6 | Yes
[Ass, 2024] log(n) / € Yes




Our result

e A 1/eb-pass algorithm

* Bridging the gap between
bipartite and general graphs

* Simpler approach

e Simpler analysis

Source Pass Weight?
[McG ‘05] (1/€)0/e)
[AG11] log(n) / €7 - log(1/¢)
[AG13] log(n) / €* Yes
[AG18] log(n) / € Yes
[AG18] log(n) / € Yes
[Tirl8] exp(1/e)
[GKMS19] exp(1/€?) Yes
[FMU22] 1/e1°
[HS23] more than 1/g1° Yes
[Ass24] log(n) / € Yes
[this talk] 1/¢€°




Remark: other models

* Our algorithm can be simulated in other computational models

* Improve round complexity in MPC and CONGEST models by £*3 factor



Warm-up:
Bipartite graphs

Based on [Eggert, Kliemann, Munstermann, Srivastav '12]

10



Definition
* Free node: unmatched vertex
* Alternating path: path alternates between matched and unmatched edges

* Augmenting path: alternating path from a free node to another

11



Starting point - short augmenting paths

Claim

Let M be a matching and Y be an inclusion-maximal set of
2/e-long augmenting paths. If |Y| < €2|M|/6, then M is a
(1+€)-approximate maximum matching.

[Kalantari, Shokoufandeh ‘95] [McGregor ‘05] [Eggert, Kliemann, Munstermann, Srivastav ‘12]

12



43
“¥ ldea: Execute truncated DFS from free nodes.

13



ff\f@ Matched
“¥ ldea: Execute truncated DFS from free nodes. Unmatehed - o - —
Each matched edge
o g

has a distance label.

-----0

1

1

1

1

1

1

1

1

1

[

\
\
\
\
\

IOO \ (0e]

1

1

1

1

1
O

\"/

14



w(@\ Matched
"%’ ldea: Execute truncated DFS from free nodes.
Unmatched - ----
Q Each matched edge
has a distance label.

* Meaning of label: current shortest distance
e Each free node maintains an active path
o (DFS search path)

-----0

1

1

1

1

1

1

1

1

1

[

\
\
\
\
\

IOO \ (0e]

1

1

1

1

1
O

\"}

15



ff\f@ Matched
“¥ ldea: Execute truncated DFS from free nodes. Unmatehed - o - —
Each matched edge
o g

has a distance label.

* Meaning of label: current shortest distance
e Each free node maintains an active path

0 (DFS search path)
Y Each pass: Extend by length-2 paths
N e Scan unmatched edges
w @ * Extend when distance label can be reduced
1 1 i
i \\ i 00
1 \CID

v 16



4(®) Matched
W\

géﬁ ldea: Execute truncated DFS from free nodes.

&

Unmatched === -—-

- Each matched edge
2"¢ pass has a distance label.

* Meaning of label: current shortest distance

e Each free node maintains an active path
(alternating path)

Each pass: Extend by length-2 paths

e Scan unmatched edges

* Extend when distance label can be reduced
* Backtrack if stuck

-----0

\ 17



2| 1

3" pass

overtakes from v

{3
“¥ ldea: Execute truncated DFS from free nodes.

Matched

Unmatched === -—-

Each matched edge
has a distance label.
Meaning of label: current shortest distance
Each free node maintains an active path
(alternating path)

Each pass: Extend by length-2 paths

Scan unmatched edges

Extend when distance label can be reduced
Backtrack if stuck

Can overtake another path to reduce label

18



Ve
&
W

2@; ldea: Execute truncated DFS from free nodes.

Matched

Unmatched

Each matched edge

CIP 3rd Pass has a distance label.
i * Meaning of label: current shortest distance
e Each free node maintains an active path
1 (alternating path)
N overtakes from v Each pass: Extend by length-2 paths

|
|
1 \ ([ ]
|
|
\ [ ]
\ 0
\
! °
|
|
|
|

Scan unmatched edges

Extend when distance label can be reduced
Backtrack if stuck

Can overtake another path to reduce label

19



©
“¥ ldea: Execute truncated DFS from free nodes.

Augmentation

O

4t pass

-----0

Matched

Unmatched === -—-

Each matched edge
has a distance label.
Meaning of label: current shortest distance
Each free node maintains an active path
(alternating path)

Each pass: Extend by length-2 paths

Scan unmatched edges

Extend when distance label can be reduced
Backtrack if stuck

Can overtake another path to reduce label

20



«(@ Matched
“¥ ldea: Execute truncated DFS from free nodes.
Unmatched =-=-=---
Augm(epntation th Each matched edge
| 4™ pass has a label.
' Analysis
1 * Runin poly(1/€) passes
. * Find an "almost" maximal set of short augmenting paths

< (ﬁ__og)_____
=
7’
7
e
7
7
7’
7
’
7
7
rd
(=Y



ff\f@ Matched
“¥ ldea: Execute truncated DFS from free nodes.
Unmatched =-=---
Augmcepntation . Each matched edge
4™ pass has a label.

Why poly(1/€) passes?

1 1. Each matched edge changes label at most 1/ times
— at most O(| M| X 1/¢€) label changes and backtrack

\ 2. Stop when < €2| M| active free nodes
\ — at least 6(e?|M|) label changes/backtrack in each pass

3. 0O(1/€3) passes

< (ﬁ__og)_____
=
7’
7
e
7
7
7’
7
’
7
7
rd
(=Y



General graphs

Free node can block itself due to odd cycles

23



General graphs: tricky example Matched

Unmatched === -—-

Augmentation

Goal: find this augmentation

24



General graphs: tricky example Matched

Unmatched === -—-

Augmentation

25



General graphs: tricky example Matched

Unmatched === -—-

Augmentation

26



General graphs: tricky example Matched

Unmatched === -—-

Augmentation

blocked by itself

27



General graphs: tricky example Matched

Unmatched === -—-

backtrack

Augmentation

28



General graphs: tricky example Matched

Unmatched === -—-

Augmentation

—_—-—— T -
-— —y
- —

/’ \\

-’ N

7 —_ - AN
/ /’ \\ \

/

/ c \ \

u /: 2 s‘ 1

N N /

Cannot extend due to small label

29



General graphs: tricky example Matched

Unmatched === -—-

Augmentation

—_—-—— T -
-— —y
- —

Cannot extend due to small label
— augmentation is never found

30



General graphs: trickier example Matched

Unmatched === -—-

Augmentation

—_—-—— T -
—-— —
- —y

[FMU]'s approach:
Store all visited vertices and edges
to detect odd cycles




General graphs: trickier example Matched

Unmatched === =—=—

Augmentation

“jump” through odd cycles



General graphs: our approach

33



“¥ ldea: Maintain alternating trees

* Each free node grows alternating trees
* Trees are vertex-disjoint

34



&‘\ﬁ@ . . H
“¥ ldea: Maintain alternating trees

* Each free node grows alternating trees
* Trees are vertex-disjoint
e Each tree has an active path

35



f?(@a\ . . H
“¥ ldea: Maintain alternating trees

Each free node grows alternating trees
* Trees are vertex-disjoint

e Each tree has an active path Q“ outer ¢

’ ) inner 1

2

* Even layers: outer vertices 3
* Odd layers: inner vertices | | ;—

* Root: outer vertex

36



&‘\ﬁ@ . . H
“¥ ldea: Maintain alternating trees

* Read edges (w, v) from stream
* Focus on edges from an active path

37



@\ﬁ@} . . M
“¥ ldea: Maintain alternating trees

* Read edges (w, v) from stream
* Focus on edges from an active path

Case 1: vis not in any tree — Extend

38



d(@ . . H
“¥ ldea: Maintain alternating trees

* Read edges (w, v) from stream
* Focus on edges from an active path

Case 1: vis not in any tree — Extend

Case 2: vis an inner vertex — Overtake
(Also take the subtree of v)

39



d(@ . . H
“¥ ldea: Maintain alternating trees

* Read edges (w, v) from stream
* Focus on edges from an active path

Case 1: vis not in any tree — Extend

Case 2: vis an inner vertex — Overtake
(Also take the subtree of v)

40



“¥ ldea: Maintain alternating trees

* Read edges (w, v) from stream
* Focus on edges from an active path

Case 1: vis not in any tree — Extend

Case 2: vis an inner vertex — Overtake
(Also take the subtree of v)

Case 3: vis an outer vertex of another tree
— Augmentation found
(remove both trees)

41



4‘/65\ . . H
“¥ ldea: Maintain alternating trees

* Read edges (w, v) from stream
* Focus on edges from an active path

Case 1: vis not in any tree — Extend

Case 2: vis an inner vertex — Overtake
(Also take the subtree of v)

Case 3: vis an outer vertex of another tree
— Augmentation found
(remove both trees)

Case 4: v is an outer vertex of the same tree??
(odd cycle!)

42



“¥> Idea: Blossom contraction
Claim (part 1) [Edmonds, 1965]

Let T be an alternating tree. An edge connecting
two outer vertices of T forms a blossom

Definition

A blossom is a subgraph that forms an odd cycle
with exactly one unmatched vertex

43



Claim (part 2) [Edmonds, 1965]

By contracting such a blossom, T remains an
alternating tree.

44



Analysis

Find "almost" maximal set
of short augmenting paths

o ”
Atree cannot grow (Recall that a tree is
beyond pon(l/e) removed after an augmentation.)

45



A tree cannot “grow” beyond
poly(1/¢)

Ve
&
L’

"¥2 |dea: Atree gets frozen when its size reaches LIMIT = 1/¢2,

So, no tree goes beyond LIMIT ?

~ LIMIT

46



A tree cannot “grow” beyond
poly(1/¢)

(T
W

"¥2 |dea: Atree gets frozen when its size reaches LIMIT = 1/¢2,

So, no tree goes beyond LIMIT ?

47



A tree cannot “grow” beyond
poly(1/e)

4

¥ |dea: Atree gets frozen when its size reaches LIMIT =1/¢2,

So, no tree goes beyond LIMIT ?

~ 3*LIMIT

48



A tree cannot “grow” beyond
poly(1/e)

)
“¥o ldea: Atree gets frozen when its size reaches LIMIT = 1/¢2.

So, no tree goes beyond LIMIT ?

~ LIMIT ~ LIMIT

~ LIMIT

49



A tree cannot “grow” beyond
poly(1/e)

e

¥ |dea: Atree gets frozen when its size reaches LIMIT =1/¢2,

So, no tree goes beyond LIMIT ?

________ ~ (1/¢)*LIMIT

~ LIMIT

~ LIMIT ~ LIMIT

~ LIMIT

Chain of overtake has length < (1/¢)

50




Open gquestions

Improving the poly-dependence on 1/k.

Further simplification of the current approach

b-matching in poly(1/¢) passes in general graphs?

51



52



